Một hình trụ có bán kính r và chiều cao \(h = r \sqrt {3}\).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) TÍnh thể tích khối trụ tạo nên bởi hình trụ đã cho.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng 300. TÍnh khoảng cách giữa đường thẳng AB và trục của hình trụ
Câu a:
Theo công thức ta có:
\(\small S_{xq} = 2\pi.r.h = 2\sqrt{3} \pi.r^2\)
\({S_t}_p = 2\pi .r.h + 2\pi .{r^2} = 2\sqrt 3 \pi .{r^2} + 2\pi .{r^2} = 2(\sqrt 3 + 1)\pi .{r^2}\) ( đơn vị thể tích)
Câu b:
\(\small V_{{tru}} = \pi.R^2.h = \sqrt{3} \pi r^3\)
Câu c:
Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm của AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có J1 là trung điểm của AB1, O1J1 = IJ.
Theo giả thiết \(\widehat {{B_1}BA}\) = 300.
do vậy: AB1 = BB1.tan 300 = \(\frac{{\sqrt 3 }}{3}h\) = r.
Xét tam giác vuông O1J1A vuông tại J1, ta có: \({O_1}{J_1}^2 = {O_1}{A^2} - A{J_1}^2 = {r^2} - \frac{{{r^2}}}{2} = \frac{3}{4}{r^2}\)
Vậy khoảng cách giữa AB và O1O2 : \(\frac{{\sqrt 3 }}{2}r\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK