Một khối trụ có bán kính đáy bằng r và chiều cao bằng \(r\sqrt 3 \).
Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 300.
a) Tính diện tích của thiết diện qua AB và song song với trục của khối trụ.
b) Tính góc giữa hai bán kính đáy qua A và B.
c) Xác định và tính độ dài đoạn vuông góc chung của AB và trục của khối trụ.
a) Từ A và B dựng các đường sinh AA’ và BB’ ta có thiết diện qua AB và song song với trục là hình chữ nhật AA’BB’. Góc giữa AB và trục chính là góc \(\widehat {ABB'}\). Do đó, \(\widehat {ABB'} = {30^0}\). Vậy \(AB' = BB'\tan {30^0} = r\sqrt 3 .\frac{1}{{\sqrt 3 }} = r\)
Do đó diện tích tứ giác AA’BB’ là \({S_{{\rm{A}}{{\rm{A}}^\prime }BB'}} = AB'.BB' = r.r\sqrt 3 = {r^2}\sqrt 3 \)
b) Góc giữa hai bán kính đáy OA và O’B là \(\widehat {AOB'}\) và \(\widehat {A'O'B}\)
Vì AB’ = r nên AOB’ là tam giác đều, do đó \(\widehat {AOB'} = {60^0}\)
c) Mặt phẳng (ABB’) chứa AB và song song với trục OO’ của hình trụ. Gọi H là trung điểm của AB’. Ta có \(OH \bot (ABB')\). Đường thẳng qua H song song với OO’ cắt AB tại I. Dựng IK // HO cắt OO’ tại K. Ta chứng minh được IK là đoạn vuông góc chung của AB và OO’.
Ta có \(IK = HO = \frac{{r\sqrt 3 }}{2}\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK