Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng \(a\sqrt 2 \) và góc giữa đường sinh và mặt phẳng đáy bằng 600. Diện tích xung quanh Sxq của hình nón và thể tích V của khối nón tương ứng là:
A. \({S_{xq}} = \pi {a^2},V = \frac{{\pi {a^3}\sqrt 6 }}{4}\)
B. \({S_{xq}} = \frac{{\pi {a^2}}}{2},V = \frac{{\pi {a^3}\sqrt 3 }}{{12}}\)
C. \({S_{xq}} = \pi {a^2}\sqrt 2 ,V = \frac{{\pi {a^3}\sqrt 6 }}{4}\)
D. \({S_{xq}} = \pi {a^2},V = \frac{{\pi {a^3}\sqrt 6 }}{{12}}\)
Gọi A là một điểm thuộc đường tròn đáy của hình nón.
Đường sinh \(SA = a\sqrt 2 \), góc giữa đường sinh và mặt phẳng đáy \(\widehat {SAO} = {60^0}\).
Tam giác SAO vuông tại O có:
\(OA = SA\cos {60^0} = \frac{{a\sqrt 2 }}{2};SO = SA\sin {60^0} = a\sqrt 2 .\frac{{\sqrt 3 }}{2} = \frac{{a\sqrt 6 }}{2}\)
Diện tích xung quanh hình nón: \({S_{xq}} = \pi rl = \pi .\frac{{a\sqrt 2 }}{2}.a\sqrt 2 = \pi {a^2}\)
Thể tích
\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .{\left( {\frac{{a\sqrt 2 }}{2}} \right)^2}.\frac{{a\sqrt 6 }}{2} = \frac{{\pi {a^3}\sqrt 6 }}{{12}}\)
Chọn D.
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK