Bài tập 5 trang 50 SGK Hình học 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 50 SGK Hình học 12

Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).

a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH.

b) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.

Câu a:
Xét 3 tam giác AHB, AHC, AHD có: chung cạnh AH và AB = AC = AD = a

\(\Rightarrow \Delta AHB=\Delta AHC=\Delta AHD\)

\(\Rightarrow HB= HC= HD\) hay H là tâm đường tròn ngoại tiếp \(\Delta BCD.\)

Do \(\Delta BCD.\) là tam giác đều BM là trung trực của \(\Delta BCD.\) nên BM cũng là trung tuyến.

\(\Rightarrow BM=\frac{a\sqrt{3}}{2}\Rightarrow BH=\frac{2}{3}BM=\frac{a\sqrt{3}}{3}\)

Xét tam giác vuông ABH, ta có:

\(AH=\sqrt{AB^2-BH^2}=\frac{a\sqrt{6}}{3}\)

Câu b:

Hình trụ có đường tròn đáy ngoại tiếp \(\Delta BCD\) và chiều cao AH thì bán kính hình trụ là:

\(r=BH=\frac{a\sqrt{3}}{3}\Rightarrow S_{xq}=2\pi.r.AH=2 \pi.\frac{a\sqrt{6}}{3}.\frac{a\sqrt{3}}{3} =\frac{2\pi a^2\sqrt{2}}{3}\)

Thể tích của khối trụ là:
\(V=\pi.r^2.AH= \pi \left ( \frac{a\sqrt{3}}{3} \right )^2.\frac{a\sqrt{6}}{3}=\frac{\pi a^3\sqrt{6}}{9}\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK