Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha \).
a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.
b) Gọi I là một điểm trên đường cao DO của hình nón sao cho \(\frac{{DI}}{{DO}} = k(0 < k < l)\). Tính diện tích thiết diện qua I và vuông góc với trục của hình nón.
a) Gọi r là bán kính của đường tròn đáy.
Ta có \(OA = r = l.\cos \alpha \) (với O là tâm của đường tròn đáy và A là một điểm trên đường tròn đó).
Ta suy ra: \({S_{xq}} = \pi rl = \pi {l^2}\cos \alpha \)
Khối nón có chiều cao \(h = DO = l\sin \alpha \). Do đó thể tích V của khối nón được tính theo công thức \(V = \frac{1}{3}Bh = \frac{1}{3}\pi {r^2}.h\)
Vậy : \(V = \frac{1}{3}\pi {l^2}{\cos ^2}\alpha .l\sin \alpha = \frac{1}{3}\pi {l^3}{\cos ^2}\alpha \sin \alpha \)
b) Thiết diện qua I và vuông góc với trục hình nón là một hình tròn bán kính r′ với \(\frac{{r'}}{r} = \frac{{DI}}{{DO}} = k \Rightarrow r' = kr = kl\cos \alpha \)
Vậy diện tích của thiết diện đi qua điểm I và vuông góc với trục hình nón là: \(S = \pi {r^{\prime 2}} = \pi {k^2}{l^2}{\cos ^2}\alpha \)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK