Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:
a) \(\widehat {BAC} = {90^0}\)
b) \(\widehat {BAC} = {60^0}\) và b = c
c) \(\widehat {BAC} = {120^0}\) và b = c
a) \(\widehat {BAC} = {90^0}\). Gọi M là trung điểm của BC, ta có MA = MB = MC. Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại M. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC
Và \({r^2} = O{A^2} = O{M^2} + M{A^2} = {(\frac{a}{2})^2} + {(\frac{b}{2})^2} + {(\frac{c}{2})^2}\)
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có \(r = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \)
b) \(\widehat {BAC} = {60^0}\) và b = c, khi đó ABC là tam giác đều cạnh b. Gọi I là trọng tâm của tam giác đều nên I đồng thời cũng là tâm của đường tròn ngoại tiếp tam giác đều ABC. Dựng d là đường thẳng vuông góc với mặt phẳng (ABC) tại I. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC và \({r^{2}} = O{A^{2}} = O{I^2} + I{A^2}\)
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
\({r^2} = {(\frac{a}{2})^2} + {(\frac{2}{3}b\frac{{\sqrt 3 }}{2})^2} = \frac{{{a^2}}}{4} + \frac{{{b^2}}}{3}\). Vậy \(r = \sqrt {\frac{{{a^2}}}{4} + \frac{{{b^2}}}{3}} \)
c) \(\widehat {BAC} = {120^0}\) và b = c, khi đó ABC là một tam giác cân có góc A ở đỉnh bằng 1200 và cạnh bên bằng b. Gọi M là trung điểm của cạnh BC. Kéo dài AM một đoạn MK = AM, ta có KA = KB = KC = AB = AC = b.
Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại K. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có: OS = OA = OB = OC và \({r^2} = O{A^2} = O{K^2} + K{A^2} = {(\frac{a}{2})^2} + {b^2}\)
Do đó ta có mặt cầu tâm O ngoại tiếp tứ diện và có bán kính \(r = \sqrt {\frac{{{a^2}}}{4} + {b^2}} \)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK