a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
\(f(x)=\frac{1}{2}x^4-3x^2+\frac{3}{2}\)
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ là nghiệm của phương trình f’’(x) = 0.
c) Biện luận theo tham số m số nghiệm của phương trình: x4 – 6x2 + 3 = m.
Câu a:
\(f(x)=\frac{1}{2}x^4-3x^2+\frac{3}{2}\)
1) Tập xác định: D=R.
2) Sự biến thiên:
Chiều biến thiên: \(f'(x)=2x^3-6x.\)
\(f'(x)=0 \Leftrightarrow 2x^3-6x=0\Leftrightarrow \Bigg \lbrack \begin{matrix} x=-\sqrt{3}\\ x=0\\ x=\sqrt{3} \end{matrix}\)
Xét dấu y':
Vậy hàm số đồng biến trên các khoảng \((-\sqrt{3};0)\) và \((\sqrt{3};+\infty )\), nghịch biến trên các khoảng \((-\infty;-\sqrt{3})\) và \((0;\sqrt{3})\).
Cực trị:
Hàm số đạt cực đại tại x = 0, giá trị cực đại \(y_{CD} = y(0)=\frac{3}{2}\), đạt cực tiểu tại \(x=-\sqrt{3}\) và \(x=\sqrt{3}\), giá trị cực tiểu \(y_{CT}=y(-\sqrt{3})=y(\sqrt{3})=-3\).
Giới hạn:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } y\\
= \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{2}{x^4} - 3{x^2} + \frac{3}{2}} \right) = + \infty \\
\mathop {\lim }\limits_{x \to + \infty } y\\
= \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{2}{x^4} - 3{x^2} + \frac{3}{2}} \right) = + \infty
\end{array}\)
Bảng biến thiên:
3) Đồ thị
Đồ thị hàm số nhận trục Oy là trục đối xứng.
Đồ thị cắt Oy tại điểm \(\left ( 0;\frac{3}{2} \right )\)
Ta có:
x = 1 ⇒ y = -1
x = - 2 ⇒ y = -5/2
x = 2 ⇒ y = -5/2
x = -1 ⇒ y = -1
Câu b:
Ta có: \(f''(x)=6x^2-6\)
\(f''(x)=0\Leftrightarrow 6x^2-6=0\Leftrightarrow \bigg \lbrack \begin{matrix} x=-1\\ x=1 \end{matrix}\)
+ Với x = -1 ⇒ f(-1) = -1, f'(-1) = 4
Phương trình tiếp tuyến của (C) tại (-1; -1) là:
y = 4(x+1) - 1 ⇔ y = 4x + 3.
+ Với x = 1 ⇒ f(1) = -1, f'(1) = -4
Vậy phương trình tiếp tuyến của (C) tại (1; -1) là:
y = -4(x-1) -1 ⇔ y= -4x + 3.
Câu c:
Ta có:
\(x^4-6x^2+3=m\)
\(\Leftrightarrow \frac{1}{2}x^4-3x^2+\frac{3}{2}=\frac{m}{2}\) (*)
Số nghiệm của (*) là số giao điểm của (C) và đường thẳng \(y=\frac{m}{2}\)
Từ đồ thì (C) ta có:
+ Nếu \(\frac{m}{2}<-3\Leftrightarrow m< -6\) thì (*) vô nghiệm.
+ Nếu \(\bigg \lbrack \begin{matrix} \frac{m}{2}=-3\\ \\ \frac{m}{2}>\frac{3}{2} \end{matrix}\Leftrightarrow \bigg \lbrack \begin{matrix} m=-6\\ m>3 \end{matrix}\) thì (*) có hai nghiệm phân biệt.
+ Nếu \(\frac{m}{2}=\frac{3}{2}\Leftrightarrow m=3\) thì (*) có ba nghiệm phân biệt.
+ Nếu \( - 3 < \frac{m}{2} < \frac{3}{2} \Leftrightarrow - 6 < m < 3\) thì (*) có bốn nghiệm phân biệt.
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK