Lý thuyết Bài tập
Câu hỏi:

Bài tập 1.82 trang 41 SBT Toán 12

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số \(y = \frac{{x + 2}}{{x - 3}}\)

b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C).

c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.

a) TXĐ: D = R∖{3}

Có \(y' = \frac{{ - 5}}{{{{\left( {x - 3} \right)}^2}}} < 0,\forall x \ne 3\) nên hàm số luôn nghịch biến trên các khoảng (−∞;3) và (3;+∞)

Hàm số đã cho không có cực trị.

TCĐ: x = 3 và TCN y = 1.

Bảng biến thiên:

Đồ thị:

b) Tiệm cận đứng là đường thẳng x = 3.

Tiệm cận ngang là đường thẳng y = 1

Do đó, giao điểm của hai đường tiệm cận là I(3;1).

Thực hiện phép biến đổi: \(\left\{ {\begin{array}{*{20}{c}}
{x = X + 3}\\
{y = Y + 1}
\end{array}} \right.\) ta được \(Y + 1 = \frac{{X + 5}}{X} \Leftrightarrow Y = \frac{{X + 5}}{X} - 1 \)

\(\Leftrightarrow Y = \frac{5}{X}\).

Vì Y = 5X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.

Vậy đồ thị hàm số đã cho nhận điểm I(3;1) làm tâm đối xứng trong hệ tọa độ cũ.

c) Giả sử  M(x0;y0) ∈ (C)

Gọi d1 là khoảng cách từ M đến tiệm cận đứng và dlà khoảng cách từ M đến tiệm cận ngang, ta có: \({d_1} = \left| {{x_0} - 3} \right|,{d_2} = \left| {{y_0} - 1} \right| = \frac{5}{{\left| {{x_0} - 3} \right|}}\)

Suy ra: 

\(\begin{array}{l}
\left| {{x_0} - 3} \right| = \frac{5}{{\left| {{x_0} - 3} \right|}}\\
 \Leftrightarrow {\left( {{x_0} - 3} \right)^2} = 5 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{{x_0} - 3 = \sqrt 5 }\\
{{x_0} - 3 =  - \sqrt 5 }
\end{array}} \right.
\end{array}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{{x_0} = 3 + \sqrt 5 }\\
{{x_0} = 3 - \sqrt 5 }
\end{array}} \right.\)

+ Với \({x_0} = 3 + \sqrt 5  \Rightarrow {y_0} = 1 + \sqrt 5 \) nên ta có điểm \(M\left( {3 + \sqrt 5 ;1 + \sqrt 5 } \right)\)

+ Với \({x_0} = 3 - \sqrt 5  \Rightarrow {y_0} = 1 - \sqrt 5 \) nên ta có điểm \(M\left( {3 - \sqrt 5 ;1 - \sqrt 5 } \right)\)

Vậy có hai điểm:

\({M_1}\left( {3 + \sqrt 5 ;1 + \sqrt 5 } \right)\);

\({M_2}\left( {3 - \sqrt 5 ;1 - \sqrt 5 } \right)\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK