Lý thuyết Bài tập
Câu hỏi:

Bài tập 1 trang 9 SGK Giải tích 12

Xét sự đồng biến, nghịch biến của các hàm số:

a) \(y = 4 + 3x - x^2\).                                    

b) \(y =\frac{1}{3} x^3 + 3x^2 - 7x - 2\).

c) \(y = x^4 - 2x^2 + 3\).                               

d) \(y = -x^3 + x^2 - 5\).

Phương pháp giải:

Với bài toán xét sự đồng biến và nghịch biến của hàm số ta thực hiện bốn bước sau:

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Tính đạo hàm \(f'(x)=0\). Tìm các điểm \(x_i\) (i= 1 , 2 ,..., n) mà tại đó đạo hàm bằng 0 hoặc không xác định.

Bước 3: Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4: Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Bên cạnh đó các em cần ôn lại các định lý về dấu của nhị thức bậc nhất và tam thức bậc hai đã học ở lớp 10 để xét dấu đạo hàm của các hàm số một cách chính xác nhất.

Lời giải:

Với các bước làm như trên chúng ta làm câu a, b, c, d bài 1 như sau:

Câu a: 

Xét hàm số \(y = 4 + 3x - x^2\)

Tập xác định: \(D=\mathbb{R};\)                            
\(y' = 3 - 2x \Rightarrow y' = 0 \Leftrightarrow 3-2x=0\Leftrightarrow x = \frac{3}{2}\).

Với \(x=\frac{3}{2}\Rightarrow y=\frac{25}{4}\)

Bảng biến thiên:

BBT câu a bài 1 trang 9 SGK Giải tích 12

Từ bảng biến thiên ta thấy: Hàm số đồng biến trên khoảng (\(-\infty\); \(\frac{3}{2}\)) và nghịch biến trên khoảng (\(\frac{3}{2}\); \(+\infty\)).

Câu b: 

Xét hàm số \(y =\frac{1}{3} x^3 + 3x^2 - 7x - 2\)

Tập xác định: \(D=\mathbb{R};\)              

\(y' = {x^2} + 6x - 7 \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 7 \end{array} \right..\)

Với \(x=-7 \Rightarrow y=\frac{239}{3}\)

Với \(x=1 \Rightarrow y=-\frac{17}{3}\)

 Bảng biến thiên:

BBT câu b bài 1 trang 9 SGK Giải tích 12

  

Từ bảng biến thiên ta thấy: Hàm số đồng biến trên các khoảng (\(-\infty\) ; -7), (1 ; \(+\infty\)) và nghịch biến trên khoảng (-7;1).

Câu c: 

Xét hàm số \(y = x^4 - 2x^2 + 3\)

Tập xác định: \(D=\mathbb{R};\)  

\(\begin{array}{l} y' = 4{x^3} - 4x = 4x({x^2} - 1)\\ y' = 0 \Leftrightarrow 4x({x^2} - 1) \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 0\\ x = 1 \end{array} \right. \end{array}\)

Với x=-1 ta có y=2.

Với x=0 ta có y=0.

Với x=1 ta có y=2.

Bảng biến thiên:

BBT câu b bài 1 trang 9 SGK Giải tích 12        

Từ bảng biến thiên ta thấy: Hàm số đồng biến trên các khoảng \((-1 ; 0), (1 ; +\infty)\); nghịch biến trên các khoảng \((-\infty; -1), (0 ; 1)\).

Câu d: 

Xét hàm số \(y = -x^3 + x^2 - 5\)

Tập xác định: \(D=\mathbb{R};\)     
\(\begin{array}{l} y' = - 3{x^2} + 2x\\ y' = 0 \Leftrightarrow - 3{x^2} + 2x \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \frac{2}{3} \end{array} \right. \end{array}\)

Với \(x=0\Rightarrow y=-5.\)

Với \(x=\frac{2}{3}\Rightarrow -\frac{131}{27}.\)

Bảng biến thiên:

BBT câu d bài 1 trang 9 SGK Giải tích 12

Từ bảng biến thiên ta thấy: Hàm số đồng biến trên khoảng \(( 0 ; \frac{2}{3} )\) và nghịch biến trên các khoảng \((-\infty; 0), ( \frac{2}{3}; +\infty).\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK