Lý thuyết Bài tập
Câu hỏi:

Bài tập 1.34 trang 21 SBT Toán 12

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(f\left( x \right) = \sqrt {25 - {x^2}} \) trên đoạn ;

b) \(f\left( x \right) = |{x^2} - 3x + 2|\) trên đoạn ;

c) \(f\left( x \right) = \frac{1}{{\sin x}}\) trên đoạn \(\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]\);

d) \(f\left( x \right) = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0;\frac{{3\pi }}{2}} \right]\).

a) \(f\left( x \right) = \sqrt {25 - {x^2}} \) trên đoạn  [−4;4].
 \(f'\left( x \right) = \frac{{ - x}}{{\sqrt {25 - {x^2}} }}\)
 trên khoảng  và  trên khoảng 
Hàm số đạt cực đại tại và 
Mặt khác, ta có 
Vậy \(\mathop {\max }\limits_{\left[ { - 4;4} \right]} f\left( x \right) = 5;\)
\(\mathop {\min }\limits_{\left[ { - 4;4} \right]} f\left( x \right) = 3\)
b) \(f\left( x \right) = |{x^2} - 3x + 2|\) trên đoạn 
Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(g\left( x \right) = {x^2} - 3x + 2\)
Ta có: \(g'\left( x \right) = 2x - 3;g'\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2}\)
Vì \(f\left( x \right) = \left\{ \begin{array}{l}
g\left( x \right)\,\,\,\,khi\,\,{x^2} - 3x + 2 \ge 0\\
 - g\left( x \right)\,khi\,\,{x^2} - 3x + 2 < 0
\end{array} \right.\)
nên ta có đồ thị của  như sau:
Từ đồ thị suy ra
\(\mathop {\max }\limits_{\left[ { - 10;10} \right]} f\left( x \right) = f\left( { - 10} \right) = 132;\)
\(\mathop {\min }\limits_{\left[ { - 10;10} \right]} f\left( x \right) = f\left( 1 \right) = f\left( 2 \right) = 0\)
c)  \(f\left( x \right) = \frac{1}{{\sin x}}\) trên đoạn \(\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]\)
\(f'\left( x \right) =  - \frac{{\cos x}}{{{{\sin }^2}x}};\)
 trên \(\left[ {\frac{\pi }{3};\frac{\pi }{2}} \right)\) và  trên \(\left( {\frac{\pi }{2};\frac{{5\pi }}{6}} \right]\) nên hàm số đạt cực tiểu tại \(x = \frac{\pi }{2}\) và \({f_{CT}} = f\left( {\frac{\pi }{2}} \right) = 1\)
Mặt khác, \(f\left( {\frac{\pi }{3}} \right) = \frac{2}{{\sqrt 3 }};f\left( {\frac{{5\pi }}{6}} \right) = 2\)
Vậy \(\mathop {\max }\limits_{\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]} f\left( x \right) = 2;\mathop {\min }\limits_{\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]} f\left( x \right) = 1\)
d) \(f\left( x \right) = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0;\frac{{3\pi }}{2}} \right]\). 
\(f\prime \left( x \right) = 2\cos x + 2\cos 2x\)
\(= 4\cos \frac{x}{2}\cos \frac{{3x}}{2}\)
\(\begin{array}{l}
f\prime \left( x \right) = 2\cos x + 2\cos 2x\prime \left( x \right) = 0\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\cos \frac{x}{2} = 0}\\
{\cos \frac{{3x}}{2} = 0}
\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}
{x = \pi }\\
{x = \frac{\pi }{3}}
\end{array}} \right.
\end{array}\)
Ta có:
\(f\left( 0 \right) = 0,f\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{2},f\left( \pi  \right) = 0,\)
\(f\left( {\frac{{3\pi }}{2}} \right) =  - 2\)
Từ đó ta có:
\(\mathop {max}\limits_{\left[ {0;\frac{{3\pi }}{2}} \right]} f\left( x \right) = \frac{{3\sqrt 3 }}{2};\mathop {min}\limits_{\left[ {0;\frac{{3\pi }}{2}} \right]} f\left( x \right) =  - 2\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK