Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số \(y=x^4-2x^2+2\).
Các cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:
Quy tắc 1:
- Tìm tập xác định.
- Tính \(f'(x)\). Tìm các điểm tại đó\(f'(x)=0\) hoặc \(f'(x)\) không xác định.
- Lập bảng biến thiên.
- Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
- Tìm tập xác định.
- Tính \(f'(x)\). Tìm các nghiệm \({x_i}\) của phương trình \(f'(x)=0\).
- Tính \(f''(x)\) và \(f''(x_i)\) suy ra tính chất cực trị của các điểm \({x_i}\).
Chú ý: Nếu \(f''(x_i)=0\) thì ta phải dùng quy tắc 1 để xét cực trị tại \({x_i}\).
Tìm cực trị của hàm số \(y=x^4-2x^2+2\)
Xét hàm số: \(y=x^4-2x^2+2\)
Tập xác định: D = R
\(y'=4x^3-4x,y'=0\Leftrightarrow 4x^3-4x=0\)
\(\Leftrightarrow \bigg \lbrack \begin{matrix} x=-1\\ x=0\\ x=1 \end{matrix}\)
Xét dấy y':
Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại yCĐ = y(0) = 2; đạt cực tiểu tại x = -1 và x = 1, giá trị cực tiểu yCT = y(\(\pm\)1) =1.
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK