Lý thuyết Bài tập
Câu hỏi:

Bài tập 2 trang 30 SGK Giải tích 12

Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:

 a) \(y=\frac{2-x}{9-x^2}\) ;                                      

b) \(y=\frac{x^2+x+1}{3-2x-5x^2}\);

c) \(y=\frac{x^2-3x+2}{x+1}\);                              

d) \(y=\frac{\sqrt {x}+1}{\sqrt {x}-1}\);

Trước khi giải bài 2 ta cùng nhắc lại về điều kiện sự tồn tại tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:

Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:

  • \(\lim_{x\rightarrow -\infty } f(x) = b\)
  •  \(\lim_{x\rightarrow +\infty } f(x) = b\)

Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:

  • \(\lim_{x\rightarrow a^+} f(x) = \pm \infty\)
  • \(\lim_{x\rightarrow a^-} f(x) = \pm \infty\)

Với hàm số \(y=f(x) = \frac{{h(x)}}{{g(x)}}\)  để tìm tiệm cận đứng ta tiến hành giải phương trình g(x) = 0. Giả sử nếu x0 là nghiệm của phương trình g(x) = 0, nếu h(x0) khác 0, thì đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = f(x). 

Lời giải chi tiết câu a, b, c, d bài 2 như sau:

Câu a:

\(\lim_{x\rightarrow (-3)^-}\frac{2-x}{9-x^2}=+\infty\);\(\lim_{x\rightarrow (-3)^+}\frac{2-x}{9-x^2}=+\infty\) 

nên đường thẳng x = -3 là tiệm cận đứng của đồ thị hàm số.

\(\lim_{x\rightarrow 3^-}\frac{2-x}{9-x^2}=-\infty\);

\(\lim_{x\rightarrow 3^+}\frac{2-x}{9-x^2}=-\infty\) nên đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.

\(\lim_{x\rightarrow +\infty }\frac{2-x}{9-x^2}=0\);

\(\lim_{x\rightarrow -\infty }\frac{2-x}{9-x^2}=0\) nên đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

Câu b:

Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = + \infty ;\)

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = - \infty\)

\(\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ + }} \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = - \infty ;\)

\(\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ - }} \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = + \infty\)

Nên đồ thị hàm số có hai tiệm cận đứng là các đường thẳng: \(x=-1;x=\frac{3}{5}\).

Vì \(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = - \frac{1}{5};\)

\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}} = - \frac{1}{5}\)

Nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=-\frac{1}{5}\).

Câu c:

\(\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \frac{{{x^2} - 3x + 2}}{{x + 1}} = - \infty ;\)

\(\mathop {\lim }\limits_{x \to {{( - 1)}^ +}} \frac{{{x^2} - 3x + 2}}{{x + 1}} = + \infty\) nên đường thẳng x = -1 là một tiệm cận đứng của đồ thị hàm số.

 \(\underset{x\rightarrow -\infty }{\lim}\frac{x^{2}-3x+2}{x+1}=\underset{x\rightarrow -\infty }{\lim}\frac{x^2(1-\frac{3}{x}+\frac{2}{x^{2}})}{x(1+\frac{1}{x})}=-\infty\) và \(\underset{x\rightarrow -\infty }{\lim}\frac{x^{2}-3x+2}{x+1}=+\infty\) nên đồ thị hàm số không có tiệm cận ngang.

Câu d:

Hàm số xác định khi: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-1\neq 0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1 \end{matrix}\right.\)

Vì \(\lim_{x\rightarrow 1^-}\frac{\sqrt{x}+1}{\sqrt{x}-1}=-\infty\)

(hoặc \(\lim_{x\rightarrow 1^+}\frac{\sqrt{x}+1}{\sqrt{x}-1}=+\infty\) ) nên đường thẳng x = 1 là một tiệm cận đứng của đồ thị hàm số.

Vì \(\lim_{x\rightarrow +\infty }\frac{\sqrt{x}+1}{\sqrt{x}-1}=\lim_{x\rightarrow +\infty }\frac{\sqrt{x}(1+\frac{1}{\sqrt{x}})}{\sqrt{x}(1-\frac{1}{\sqrt{x}})}=1\) 

nên đường thẳng y = 1 là một tiệm cận ngang của đồ thị hàm số.

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK