Lý thuyết Bài tập
Câu hỏi:

Bài tập 1 trang 23 SGK Giải tích 12

Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

a) \(y = x^3 - 3x^2 - 9x + 35\) trên các đoạn \([-4; 4]\) và \([0;5]\).

b) \(y = x^4 - 3x^2 + 2\) trên các đoạn \([0;3]\) và \([2;5]\).

c) \(y =\frac{ (2-x)}{(1-x)}\) trên các đoạn \([2;4]\) và \([-3;-2]\).

d) \(y =\sqrt{(5-4x)}\) trên đoạn \([-1;1]\).

Quy tắc tìm GTLN và GTNN của hàm số \(f(x)\) liên tục trên một đoạn \([a;b].\)

  • Tìm các điểm \(x_i\in (a ; b)\) (i = 1, 2, . . . , n) mà tại đó \(f'(x_i)=0\) hoặc \(f'(x_i)\) không xác định.
  • Tính \(f(x),f(b),f(x_i)\) (i = 1, 2, . . . , n).
  • Khi đó :  

\(\begin{array}{l}
\mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\};\\
\mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);f\left( b \right);f\left( {{x_i}} \right)} \right\}
\end{array}\)

​Áp dụng ta giải câu a, b, c, d bài 1 như sau:

Câu a:

Xét hàm số \(y = x^3 - 3x^2 - 9x + 35\)

Tập xác định \(D=\mathbb{R}\).

Hàm số liên tục trên các đoạn [-4;4] và [0;5] nên có GTLN và GTNN trên mỗi đoạn này.

Ta có: y’ = 3x2 – 6x – 9 = 3(x2 – 2x – 3)

Trên đoạn [-4;4]:

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 3 \in \left[ { - 4;4} \right]\\ x = - 1 \in \left[ { - 4;4} \right] \end{array} \right.\)

Ta có: y(-4)=-41; y(4)=15; y(-1)=40; y(3)=8.

Vậy: 

Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ { - 4;4} \right]} = y( - 1) = 40\).

Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ { - 4;4} \right]} = y( - 4) = - 41.\)

Trên đoạn [0;5]:

\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = 3 \in \left[ {0;5} \right]}\\ {x = - 1 \notin \left[ {0;5} \right]} \end{array}} \right.\)

Ta có:  y(0)=35; y(5)=40; y(3)=8.

Vậy:

Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ {0;5} \right]} = y(5) = 40.\)

Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ {0;5} \right]} = y(3) = 8.\)

Câu b:

Xét hàm số \(y = x^4 - 3x^2 + 2\)

Tập xác định D=R

Hàm số liên tục trên các đoạn \([0;3]\) và \([2;5]\) nên có GTLN và GTNN trên các đoạn này:

Đạo hàm: y'=4x3-6x.

Trên đoạn [0;3]:

\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = - \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]}\\ {x = 0 \in \left[ {0;3} \right]}\\ {x = \sqrt {\frac{3}{2}} \in \left[ {0;3} \right]} \end{array}} \right.\)

Ta có: y(0)=2; \(y\left( {\sqrt {\frac{3}{2}} } \right) = - \frac{1}{4}\); y(3)=56.

Vậy:

Giá trị lớn nhất của hàm số:\(\mathop {\max y}\limits_{x \in \left[ {0;3} \right]} = y\left( 3 \right) = 56.\)

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {0;3} \right]} = y\left( {\sqrt {\frac{3}{2}} } \right) = - \frac{1}{4}.\)

Trên đoạn [2;5]:

\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = - \sqrt {\frac{3}{2}} \notin \left[ {2;5} \right]}\\ {x = 0 \notin \left[ {2;5} \right]}\\ {x = \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]} \end{array}} \right.\)

Ta có: y(2)=6; y(5)=552

Vậy:

Giá trị lớn nhất của hàm số \(\mathop {\max y}\limits_{x \in \left[ {2;5} \right]} = y\left( 6 \right) = 552.\)

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;5} \right]} = y\left( 2 \right) = 6.\)

Câu c:

Xét hàm số \(y =\frac{ (2-x)}{(1-x)}\)

Hàm số có tập xác định D = R \{1} và liên tục trên các đoạn [2;4] và [-3;-2] thuộc D, do đó hàm số có GTLN, GTNN trên mỗi đoạn này.

Ta có : \(y' = \frac{1}{{{{\left( {1 - x} \right)}^2}}} > 0,\forall x \ne 1\)

Trên đoạn [2;4]: \(y(2)=0;y(4)=\frac{2}{3}.\)

Vậy: 

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;4} \right]} = y\left( 2 \right) = 0.\)

Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ {2;4} \right]} = y\left( 4 \right) = \frac{2}{3}.\)

Trên đoạn [-3;-2]: \(y(-3)=\frac{5}{4};y(-2)=\frac{4}{3}.\)

Vậy:

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ { - 3;-2} \right]} = y\left( { - 3} \right) = \frac{5}{4}.\)

Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ { - 3; - 2} \right]} = y\left( { - 2} \right) = \frac{4}{3}.\)

Câu d:

Xét hàm số \(y =\sqrt{(5-4x)}\) 

Hàm số có tập xác định \({\rm{D = }}\left( { - \infty ;\frac{5}{4}} \right]\) nên xác định và liên tục trên đoạn [-1;1], do đó có GTLN, GTNN trên đoạn [-1;1].

Ta có:\(y' = - \frac{2}{{\sqrt {5 - 4x} }} < 0,\forall x \in \left[ { - 1;1} \right].\)  

Trên đoạn [-1;1]: y(-1) = 3; y(1) = 1.

Vậy:

Giá trị lớn nhất của hàm số \(\mathop {\max }\limits_{x \in \left[ { - 1;1} \right]} y = y( - 1) = 3.\)

Giá trị nhỏ nhất của hàm số \(\mathop {\min }\limits_{x \in \left[ { - 1;1} \right]} y = y(1) = 1.\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK