Lý thuyết Bài tập
Câu hỏi:

Bài tập 4 trang 24 SGK Giải tích 12

Tính giá trị lớn nhất của các hàm số sau:

a) \(y=\frac{4}{1+x^2}\).

b) \(y=4x^3-3x^4\).

Bài 4 yêu cầu tìm giá trị lớn nhất của hàm số mà không có miền cho trước thì ta hiểu yêu cầu bài tập là tập giá trị lớn nhất của hàm số trên tập xác định.

Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp D, ta tiến hành khảo sát sự biến thiên của hàm số trên D, rồi căn cứ vào bảng biến thiên của hàm số đưa ra kết luận về GTLN và GTNN của hàm số.

Dưới đây là lời giải chi tiết bài 4:

Câu a: 

Tập xác định \(D=\mathbb{R}.\)

Đạo hàm: \(y' =  - \frac{{8x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\)..

\(y'=0\Leftrightarrow x=0.\)

Bảng biến thiên:

Bảng biến thiên câu a bài 4 trang 24 SGK Giải tích 12

Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số là \(\max y = y(0) = 4.\)

Câu b: 

Tập xác định \(D=\mathbb{R}.\)

Đạo hàm y’ = 12x2 – 12x3 = 12x2 (1 – x).

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1 \end{array} \right.\)

Bảng biến thiên:

Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số là \(\max y = y(1) = 1.\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK