Cho hình chóp tam giác O.ABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Hãy tính đường cao OH của hình chóp.
Gọi I là hình chiếu của O lên AB. Vì OC vuông góc với OA và OB nên \(OC\perp (OAB)\Rightarrow OC\perp AB\).
Từ đó ta suy ra: \(AB\perp (COI)\).
Vậy H là hình chiếu của O lên CI.
Trong tam giác vuông AOB ta có:
\(\frac{1}{OI^2}=\frac{1}{OA^2}+\frac{1}{OB^2} \ \ \ (1)\)
Trong tam giác vuông COI ta có: \(\frac{1}{OH^2}=\frac{1}{OI^2}+\frac{1}{OC^2} \ \ (2)\)
Từ (1) và (2) ta có:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2} + \frac{1}{OC^2} \)
\(= \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(=\frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\)
\(\Leftrightarrow OH=\frac{abc}{\sqrt{a^2b^2+b^2c^2+c^2a^2}}\)
Nhận xét: Ta có thể tính OH từ mối liên hệ:
\(V_{O.ABC}=\frac{1}{6}abc=\frac{1}{3}.OH.S_{\Delta ABC}\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK