Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn thẳng SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Câu a:
Ta có: \(AC=BD=a\sqrt{2}\Rightarrow AO=\frac{a\sqrt{2}}{2}\)
\(\Rightarrow SO=\sqrt{SA^2-AO^2}=\sqrt{a^2-\frac{2a^2}{4}}= \frac{a\sqrt{2}}{2}\)
Câu b:
Vì các cạnh bên và cạnh đáy đều bằng a nên các tam giác SBC và SDC là các tam giác đều; M là trung điểm SC ⇒ BM \(\perp\) SC và DM \(\perp\) SC.
\(\Rightarrow SC\perp (MBD);\) mà \(SC\subset (SAC)\)
\(\Rightarrow (MBD)\perp (SAC)\) (đpcm)
Câu c:
Vì BM là đường cao của tam giác đều cạnh a
\(\Rightarrow BM=\frac{a\sqrt{3}}{2}.\)
Trong tam giác vuông OMB ta có:
\(OM=\sqrt{MB^2-OB^2}=\sqrt{\frac{3a^2}{4}-\frac{2a^2}{4}}=\frac{a}{2}\)
Lại thấy: \(AC\perp BD\) và \(SO\perp AC\Rightarrow BD\perp (SAC)\); mà BD là giao tuyến của mặt phẳng (MBD) và mặt phẳng (ABCD) ⇒ góc MOC là góc giữa hai mặt phẳng (MBD) và (ABCD).
Trong tam giác vuông OSC có: \(OM=MS=MC=\frac{SC}{2}=\frac{a}{2}\)
\(\Rightarrow \Delta MOC\) là giác vuông cân \(\Rightarrow MOC =45^0\).
-- Mod Toán 11
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK