Trong mặt phẳng (α) cho tam giác ABC vuông ở B. Một đoạn thẳng AD vuông góc với \((\alpha )\) tại A. Chứng minh rằng:
a) (ABD) là góc giữa hai mặt phẳng (ABC) và (DBC)
b) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
c) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
Câu a:
Để xác định góc giữa hai mặt phẳng ta xác định một mặt phẳng vuông góc với giao tuyến của hai mặt phẳng ban đầu.
Góc giữa hai giao tuyến của mặt phẳng thứ ba với hai mặt phẳng ban đầu chính là góc cần xác định.
Ta thấy: BC là giao tuyến của mặt phẳng (ABC) và mặt phẳng (DBC).
Mặt khác \(AD\perp (ABC)\Rightarrow AD\perp BC\)
Vì do \(\Delta ABC\) vuông ở \(B\Rightarrow AB\perp BC\Rightarrow BC\perp (ABD)\)
Giao tuyến của mặt phẳng (ABD) với mp(ABC) và (DBC) lần lượt là AB và BD ⇒ góc giữa hai mặt phẳng (ABC) và (DBC) là góc ABD (đpcm).
Câu b:
Theo chứng minh trên BC .(ABD) mà BC.(BCD)⇒ \((ABD)\perp (BCD)\)
Câu c:
Trong mặt phẳng (DBC) vẽ AH.BD \((H\in BD)\)
Trong mặt phẳng (DBC) vẽ HK // BC \((K\in DC)\)
Ta sẽ chứng minh mặt phẳng (AHK) là mặt phẳng (P) mà bài đã cho.
Thật vậy: Theo chứng minh trên \(BC\perp (ABD)\) và HK // BC (cách dựng) \(\Rightarrow HK\perp (ABD)\Rightarrow HK\perp BD\)
Mặt khác \(AH\perp BD\) (cách dựng), từ đó suy ra \(BD\perp (AHK)\Rightarrow\) mặt phẳng (AHK) chính là mặt phẳng (P) hay nói cách khác HK // BC với H, K là giao điêm của (P) với DB và DC.
-- Mod Toán 11
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK