Bài tập 3 trang 145 SGK Giải tích 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 3 trang 145 SGK Giải tích 12

Phát biểu các điều kiện cần và đủ để hàm số f(x) có cực trị (cực đại, cực tiểu) tại điểm x0.

Điều kiện cần để hàm số có cực trị:

\(f(x)\) đạt cực trị tại \(x_0\), có đạo hàm tại \(x_0\) thì \(f'(x_0)=0\).

Điều kiện đủ để hàm số có cực trị:

  • Điều kiện thứ nhất: Cho hàm số \(y=f(x)\) liên tục trên khoảng \(K = ({x_0} - h;{x_0} + h)\,(h > 0)\) và có đạo hàm trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\):
    • Nếu   thì x0 là điểm cực tiểu của hàm số \(f(x)\).
    •  Nếu  thì x0 là điểm cực đại của hàm số \(f(x)\).
  • Cách phát biểu khác dễ hiểu hơn: Đi từ trái sang phải
    • Nếu \(f(x)\) đổi dấu từ - sang + khi qua \(x_0\) thì \(x_0\) là điểm cực tiểu.
    • Nếu \(f(x)\) đổi dấu từ + sang - khi qua \(x_0\) thì \(x_0\) là điểm cực đại.
  • Điều kiện thứ hai: Cho hàm số \(y=f(x)\) có đạo hàm cấp hai trên khoảng \(K = ({x_0} - h;{x_0} + h)\,(h > 0)\):
    • Nếu \(f'(x_0)=0\), \(f''(x_0)<0\) thì \(x_0\) là điểm cực đại của hàm số \(f(x)\).
    • Nếu \(f'(x_0)=0\)\(f''(x_0)>0\) thì \(x_0\) là điểm cực tiểu của hàm số \(f(x)\).

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK