Cho đường tròn đường kính AB cố định. M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho \(\small MI = 2MB\)
a) Chứng minh góc AIB không đổi
b) Tìm tập hợp các điểm I nói trên
Với bài 50, chúng ta sẽ chứng minh giá trị của một góc luôn không đổi dù điểm phụ thuộc vào góc đó di động trên đường tròn, sau đó tìm quỹ tich của điểm ấy.
Câu a:
Ta có góc AMB là góc nội tiếp chắn nửa đường tròn nên:
\(\small \widehat{AMB}=\widehat{BMI}=90^o\)
Xét tam giác MBI vuông tại M có:
\(\small tan\widehat{MIB}=\frac{MB}{MI}=\frac{1}{2}\Rightarrow \widehat{MIB}=26^o33'\)
Nên góc AIB không đổi.
Câu b:
Mô tả hình vẽ, ta thấy rằng:
Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc \(\small 26^o33'\), vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung như mô tả hình bên)
Vậy quỹ tích điểm I chính là các cung mô tả như hình vẽ trên, với các điểm M' và I' nằm về mặt phẳng phía bên dưới.
-- Mod Toán 9
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK