Cho tam giác ABC nội tiếp đường tròn. P, Q, R theo thứ tự là các điểm chính giữa các cung bị chắn BC, CA, AB bởi các góc A, B, C.
a) Chứng minh \(\small AP \perp QR\)
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân
Tương tự với các bài trước, để giải bài 42 ta cần vận dụng tính chất các góc có đỉnh nằm trong và ngoài đường tròn.
Câu a:
Gọi giao điểm của AP và QR là D
Vì các điểm P, Q, R lần lượt là điểm chính giữa các cung AB, AC, BC nên điểm đó chia cung ban đầu thành 2 cung có số đo bằng nhau!
Ta có góc ADR là góc có đỉnh nằm bên trong đường tròn nên:
\(\small \widehat{ADR}=\frac{1}{2}\left (sd\widehat{AR}+sd\widehat{QC}+sd\widehat{CP} \right )\)
\(=\frac{1}{2}\left [\frac{1}{2} sd\widehat{AB}+\frac{1}{2} sd\widehat{AC} +\frac{1}{2} sd\widehat{BC} \right ]=\frac{1}{4}\left [ sd\widehat{AB}+ sd\widehat{AC}+ sd\widehat{BC} \right ]=90^o\)
hay \(\small AP\perp RQ\)
Câu b:
Ta có góc CIP là góc có đỉnh nằm trong đường tròn nên:
\(\small \widehat{CIP}=\frac{1}{2}(sd\widehat{CP}+sd\widehat{AR})\)
Mặc khác, góc ICP là góc nội tiếp chắn cung PR
\(\small \widehat{ICP}=\frac{1}{2}sd\widehat{PR}\)
Mà \(\small sd\widehat{PR}=sd\widehat{RB}+sd\widehat{BP}=sd\widehat{RA}+sd\widehat{CP}\)
\(\small \Rightarrow \widehat{CIP}=\widehat{ICP}\)
Tam giác CPI cân tại P
-- Mod Toán 9
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK