A. \(y' = \tan x - \cot x\).
B. \(y' = {\tan ^3}x\).
C. \(y' = {\cot ^3}x\).
D. \(y' = \tan x + \cot x\).
A. Hàm số có ba điểm cực trị.
B. Hàm số có giá trị cực đại bằng 3.
C. Hàm số có giá trị cực đại bằng 0.
D. Hàm số có hai điểm cực tiểu.
A. (-2; 1)
B. [-1 ; 2)
C. (-1 ; 2)
D. (- 2 ;1]
A. \(\dfrac{V}{3}\)
B. \(\dfrac{V}{4}\)
C. \(\dfrac{V}{6}\)
D. \(\dfrac{V}{2}\)
A. \( - \dfrac{5 }{2}\)
B. \( -\dfrac {1 }{ 2}\)
C. 1
D. \(\dfrac{1 }{ 2}\).
A. 15
B. \(\sqrt {15} \)
C. 113
D. \(\sqrt {113} \).
A. 1
B. 3
C. 80
D. 9
A. 3
B. 2
C. 10
D. 0
A. \(\sqrt 3 .\)
B. \(2\sqrt 3 .\)
C. \(2\sqrt 2 .\)
D. \(3\sqrt 2 .\)
A. \(8\pi {a^2}.\)
B. \(4\pi {a^2}.\)
C. \(16\pi {a^2}.\)
D. \(12\pi {a^2}.\)
A. \(2.\)
B. \( - 1.\)
C. \( - 2.\)
D. \(1.\)
A. \(y = \dfrac{{2x - 1}}{ {x + 3}}\)
B. \(y =\dfrac {{1 - x} }{ {1 + x}}\)
C. \(y = 2{x^3} - 3{x^2} - 2\).
D. \(y = - {x^3} + 3x - 2\).
A. Đồ thị hàm số luôn có điểm đối xứng.
B. Đồ thị hàm số luôn cắt trục hoành
C. Hàm số luôn có cực trị.
D. \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
A. \( - 2{e^x}\)
B. \(2{e^x}\)
C. \({e^x}\)
D. \(x{e^x}\).
A. 3
B. \({1 \over 6}\)
C. \({5 \over 6}\)
D. \({3 \over 2}\).
A. \({e^x} + 2\sin x\).
B. \({e^x} + \sin 2x\).
C. \({e^x} + {\cos ^2}x\).
D. \({e^x} - 2\sin x\).
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x
A. 4
B. 5
C. 6
D. 7
A. \(z = \dfrac{7}{6} - 4i\).
B. \(z = \dfrac{6}{7} + 4i\).
C. \(z = - \dfrac{7}{6} - 4i\).
D. \(z = - \dfrac{7}{6} + 4i\).
A. \(A.\,\,V = \dfrac{{{a^3}}}{6}\)
B. \(V = \dfrac{{{a^3}}}{3}\)
C. \(V = {a^3}\)
D. \(V = \dfrac{{{a^3}}}{9}\)
A. \(6\pi {\rm{ c}}{{\rm{m}}^2}.\)
B. \(16\pi {\rm{ c}}{{\rm{m}}^2}.\)
C. \(40\pi {\rm{ c}}{{\rm{m}}^2}.\)
D. \(208\pi {\rm{ c}}{{\rm{m}}^2}.\)
A. \(\dfrac{{9\pi {a^3}}}{2}.\)
B. \(\dfrac{{9\pi {a^3}}}{8}.\)
C. \(\dfrac{{27\pi {a^3}}}{2}.\)
D. \(36\pi {a^3}.\)
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \({x^2} + {y^2} - {z^2} + 2x - y + 1 = 0.\)
C. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} - 1.\)
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\).
B. \(\int {2\sin x\,dx = 2\cos x} + C\).
C. \(\int {2\sin x\,dx = - 2\cos x} + C\).
D. \(\int {2\sin x\,dx = \sin 2x} + C\).
A. \(\dfrac{1}{3}\)
B. 17
C. 7
D. 9
A. y = 3x
B. y = x – 3
C. y = 3x – 3
D. \(y = \dfrac{1 }{ 3}(x - 1)\)
A. \(\sqrt 5 - 1\).
B. \(1 - \sqrt 5 \).
C. \(\sqrt 5 + 1\).
D. \(\sqrt 5 + 2\).
A. 1 và 12.
B. – 1 và 12.
C. – 1 và 12i.
D. 1 và 12i.
A. \(\dfrac{{3a\sqrt {13} }}{{13}}\)
B. \(\dfrac{{4a\sqrt {13} }}{{13}}\)
C. \(\dfrac{{a\sqrt {13} }}{{13}}\)
D. \(\dfrac{{2a\sqrt {13} }}{{13}}\)
A. Hình bát diện đều có 8 đình.
B. Hình bát diện đều có các mặt là bát giác đều.
C. Hình bát diện đều có các mặt là hình vuông.
D. Hình bát diện đều là đa diện đều loại {3; 4}.
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
A. \({\left( {{5 \over 4}} \right)^m} > {\left( {{6 \over 5}} \right)^m} > 1\)
B. \({\left( {{5 \over 4}} \right)^m} < {\left( {{6 \over 5}} \right)^m} < 1\)
C. \({\left( {{5 \over 4}} \right)^m} < 1 < {\left( {{6 \over 5}} \right)^m}\)
D. \(1 < {\left( {{5 \over 4}} \right)^m} < {\left( {{6 \over 5}} \right)^m}\).
A. \({b^n} = a\)
B. \({a^n} = b\)
C. \({a^n} = {b^n}\)
D. \({n^a} = b\).
A. \({\log _a}{a^b} = b\)
B. \({\log _a}{a^b} = {a^b}\)
C. \({a^{{{\log }_a}b}} = b\)
D. \({a^{{{\log }_a}b}} = {\log _a}{a^b}\)
A. \({\left( {x - 1} \right)^2} + {\left( {2y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)
C. \({\left( {2x - 1} \right)^2} + {\left( {2y - 1} \right)^2} + {\left( {2z + 1} \right)^2} = 6.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 3 - 6x.\)
A. 12
B. 10
C. 13
D. 11
A. \(24\pi {\rm{ c}}{{\rm{m}}^3}\).
B. \(36\pi {\rm{ c}}{{\rm{m}}^3}.\)
C. \(48\pi {\rm{ c}}{{\rm{m}}^3}.\)
D. \(72\pi {\rm{ c}}{{\rm{m}}^3}.\)
A. Hàm số có giá trị cực tiểu bằng 2.
B. Hàm số đạt cực đại tại x = 0 và giá trị cực tiểu tại x = 2.
C. Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng – 2 .
D. Hàm số có ba điểm cực trị.
A. 2y – 1= 0
B. 2x – 1 = 0
C. x – 2 = 0
D. y – 2 = 0.
A. \({\log _{0,5}}a > {\log _{0,5}}b\,\,\, \Leftrightarrow \,\,a > b > 0\).
B. \(\log x < 0\,\,\, \Leftrightarrow \,\,\,0 < x < 1\).
C. \({\log _2}x > 0\,\, \Leftrightarrow \,\,\,x > 1\).
D. \({\log _{{1 \over 3}}}a = {\log _{{1 \over 3}}}b\,\,\, \Leftrightarrow \,\,a = b > 0\,\).
A. \( - 1 < x \le 1\).
B. \({1 \over 3} < x \le 3\).
C. \( - 1 \le x \le 1\)
D. \(0 \le x \le 1\).
A. 3
B. 4
C. 5
D. 6
A. \(6\pi {\rm{ cm}}{\rm{.}}\)
B. \(12\pi {\rm{ cm}}{\rm{.}}\)
C. \(24\pi {\rm{ cm}}{\rm{.}}\)
D. \(36\pi {\rm{ cm}}{\rm{.}}\)
A. 4
B. 3
C. 2
D. 1
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\).
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\).
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\).
A. 46
B. 44
C. 36
D. 54
A. \(z = \pm i\).
B. \(\left[ \begin{array}{l}z = \dfrac{{\sqrt 2 }}{2}\\z = i\end{array} \right.\).
C. \(\left[ \begin{array}{l}z = \pm \dfrac{i}{{\sqrt 2 }}\\z = \pm i\end{array} \right.\).
D. \(\left[ \begin{array}{l}z = \pm \dfrac{1}{{\sqrt 2 }}\\z = \pm i\end{array} \right.\).
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK