Cho đa diện (H), biết rằng mỗi mặt của (H) đều là những đa giác có số cạnh là lẻ

Câu hỏi :

Cho đa diện (H), biết rằng mỗi mặt của (H) đều là những đa giác có số cạnh là lẻ và tồn tại ít nhất một mặt có số cạnh khác với các mặt còn lại. Hỏi khẳng định nào đúng trong các khẳng định sau

A. Tổng số các cạnh của (H) bằng 9

B. Tổng số các cạnh của (H) bằng 5

C. Tổng số các cạnh của (H) là số lẻ

D. Tổng số các cạnh của (H) là số chẵn

* Đáp án

D

* Hướng dẫn giải

Chọn D

Gọi tổng số các mặt của (H) là m và tổng số các cạnh của (H) là c.

Ta có: 2(p1+p2++pm)+m=2c. Trong đó mỗi mặt nào đó có số cạnh là 2pi+1, i=1,,m

Do đó m chia hết cho 2. Hơn nữa có ít nhất một mặt ngũ giác nên tổng số mặt lớn hơn 5, do đó, tổng số cạnh lớn hơn 9 và tổng số đỉnh lớn hơn 5.

Hình chóp có đáy là ngũ giác của tổng số mặt là một số chẵn.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK