So sánh các góc của tam giác ABC, biết rằng:
AB=2cm, BC=4cm, AC=5cm
So sánh các cạnh của tam giác ABC, biết rằng:
\(\widehat A = {80^o};\,\,\widehat B = {45^o}\)
Cho tam giác ABC với \(\widehat A = {100^o},\widehat B = {40^o}\)
a) Tìm cạnh lớn nhất của tam giác ABC
b) Tam giác ABC là tam giác gì
Trong một tam giác, đối diện với cạnh nhỏ nhất là góc gì (nhọn, vuông, tù)?
Ba bạn Hạnh, Nguyên, Trang đi đến trường theo ba con đường AD, BD và CD. Biết rằng ba điểm A, B, C cùng nằm trên một đường thẳng và góc ACD là góc tù.
Hỏi ai đi xa nhất, ai đi gần nhất? Hãy giải thích
Xem hình 6, có 2 đoạn thẳng bằng nhau BC và DC. Hỏi rằng kết luận nào trong các kết luận sau là đúng? Tại sao?
\(\begin{array}{l} a)\widehat A = \widehat B\\ b)\widehat A > \widehat B\\ c)\widehat A < \widehat B \end{array}\)
Một cách chứng minh khác của định lí 1:
Cho tam giác ABC với AC>AB. Trên tia AC, lấy điểm B' sao cho AB'=AB.
a) Hãy so sánh góc ABC với góc ABB'
b) Hãy so sánh góc ABB' với góc AB'B
c) Hãy so sánh góc AB'B với góc ACB
Từ đó suy ra \(\widehat {ABC} > \widehat {ACB}\)
Để tập bơi nâng dần khoảng cách, hàng ngày bạn Nam xuất phát từ M, ngày thứ nhất bạn bơi đến A, ngày thứ hai bạn bơi đến B, ngày thứ ba bạn bơi đến C,...(h.12)
Hỏi rằng bạn Nam tập bơi như thế có đúng mục đích đề ra hay không (ngày hôm sau có bơi được xa hơn ngày hôm trước hay không)? Vì sao?
Chứng minh rằng trong một tam giác cân, độ dài đoạn thẳng nối đỉnh đối diện với đáy và một điểm bất kì của cạnh đáy nhỏ hơn hoặc bằng độ dài của cạnh bên.
Một cách chứng minh khác của định lí 2:
Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:
Nếu BC Hướng dẫn:
a) Góc ACD là góc gì? Tại sao?
b) Trong tam giác ACD, cạnh nào lớn nhất, tại sao?
Cho hình 14. Ta gọi độ dài đoạn thẳng AB là khoảng cách giữa hai đường thẳng song song a và b.
Một tấm gỗ xẻ có hai cạnh song song. Chiều rộng của tấm gỗ là khoảng cách giữa hai cạnh đó
Muốn đo chiều rộng của tấm gỗ, ta phải đặt thước như thế nào? Tại sao? Cách đặt trước như trong hình 15 có đúng không?
Đố: Vẽ tam giác PQR có PQ=PR=5cm, QR=6cm
Lấy điểm M trên đường thẳng QR sao cho PM=4,5cm. Có mấy điểm M như vậy?
Điểm M có nằm trên cạnh QR hay không? Tại sao?
Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác. Trong những trường hợp còn lại, hãy thử dựng tam giác có độ dài ba cạnh như thế:
a) 2cm, 3cm, 6cm
b) 2cm, 4cm, 6cm
c) 3cm, 4cm, 6cm
Cho tam giác ABC với hai cạnh BC=1cm, AC=7cm.
Hãy tìm độ dài cạnh AB, biết rằng độ dài này là một số nguyên (cm). Tam giác ABC là tam giác gì?
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.
a) So sánh MA với MI+IA, từ đó chứng minh \(MA + MB < IB + IA\)
b) So sánh IB với IC+CB, từ đó chứng minh \(IB + IA < CA + CB\)
c) Chứng minh bất đẳng thức \(MA + MB < CA + CB\)
Cho các bộ ba đoạn thẳng có độ dài như sau:;
a) 2cm; 3cm; 4cm
b) 1cm; 2cm; 3,5cm
c) 2,2cm; 2cm; 4,2cm
Tìm chu vi của một tam giác cân biết độ dài hai cạnh của nó là 3,9cm và 7,9cm
Một cách chứng minh khác của bất đẳng thức tam giác:
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC (H thuộc BC)
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở Bài 1 để chứng minh AB+AC>BC
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại
Một trạm biến áp và một khu dân cư được xây dựng cách xa hai bờ sông tại hai địa điểm A và B (h.19)
Hãy tìm trên bờ sông gần khu dân cư một địa điểm C để dựng một cột mắc dây đưa điện từ trạm biến áp về cho khu dân cư sao cho độ dài đường dây dẫn là ngắn nhất
Ba thành phố A, B, C là ba đỉnh của một tam giác; biết rằng: AC=30km, AB=90km (h.20)
a) Nếu đặt ở C máy phát sóng truyền thanh có bán kính hoạt động bằng 60km thì thành phố B có nhận được tín hiệu không? Vì sao?
b) Cũng câu hỏi như vậy với máy phát sóng có bán kính hoạt động bằng 120km?
Cho G là trọng tâm của tam giác DEF với đường trung tuyến DH (h. 24)
Trong các khẳng định sau đây, khẳng định nào đúng?
\(\begin{array}{l} \frac{{DG}}{{DH}} = \frac{1}{2};\frac{{DG}}{{GH}} = 3\\ \frac{{GH}}{{DH}} = \frac{1}{3};\frac{{GH}}{{DG}} = \frac{2}{3} \end{array}\)
Cho hình 25. Hãy điền số thích hợp vào chỗ trống trong các đẳng thức sau:
a) MG=...MR; GR=...MR; GR=...MG
b) NS=...NG; NS=...GS; NG=...GS
Biết rằng: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền. Hãy giải bài toán sau:
Cho tam giác vuông ABC có hai cạnh góc vuông AB=3cm, AC=4cm. Tính khoảng cách từ đỉnh A tới trọng tâm G của tam giác ABC.
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau
Hãy chứng minh định lí đảo của định lí trên: nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh tam giác DEI=tam giác DFI
b) Cho biết số đo của hai góc DIE và DIF
c) Biết DE=DF=13cm, EF=10cm, hãy tính độ dài đường trung tuyến DI
Gọi G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA=GB=GC
Hướng dẫn: Áp dụng định lí ở bài tập 26
Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'
a) So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC
b) So sánh các đường trung tuyến của tam giác BGG' với các cạnh của tam giác ABC
Hình 31 cho biết cách vẽ tia phân giác của góc xOy bằng thước hai lề:
- Áp một lề của thước vào cạnh Ox, kẻ đường thẳng a theo lề kia
- Làm tương tự với cạnh Oy, ta kẻ được đường thẳng b
- Gọi M là giao điểm của a và b, ta có OM là tia phân giác của góc xOy
Hãy chứng minh tia OM được vẽ như vậy đúng là tia phân giác của góc xOy
(Gợi ý: Dựa vào bài tập 12 chứng minh các khoảng cách từ M đến Ox và đến Oy bằng nhau (do cùng bằng khoảng cách hai lề của chiếc thước) rồi áp dụng định lí 2)
Cho tam giác ABC. Chứng minh rằng giao điểm của hai tia phân giác của hai góc ngoài \({B_1},{C_1}\) nằm trên tia phân giác của góc A
Chi hai đường thẳng xx', yy' cắt nhau tại O (h.33)
a) Chứng minh hai tia phân giác Ot, Ot' của một cặp góc kề bù tạo thành một góc vuông
b) Chứng minh rằng: Nếu M thuộc đường thảng Ot hoặc thuộc đường thẳng Ot' thì M cách đều hai đường thẳng xx' và yy'
c) Chứng minh rằng: Nếu điểm M cách đều hai đường thẳng xx', yy' thì M thuộc đường thẳng Ot hoặc đường thẳng Ot'
d) Khi \(M \equiv O\) thì các khoảng cách từ M đến xx' và yy' bằng bao nhiêu?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx', yy'?
Cho góc xOy khác góc bẹt. Trên tia Ox lấy hai điểm A và B, trên tia Oy lấy hai điểm C và D sao cho OA=OC, OB=OD. Gọi I là giao điểm của hai đoạn thẳng AD và BC. Chứng minh rằng:
a) BC=AD
b) IA=IC, IB=ID
c) Tia OI là tia phân giác của góc xOy
Có mảnh sắt phẳng hình một góc (h. 34) là một chiếc thước thẳng có chia khoảng. Làm thế nào để vẽ được tia phân giác của góc này?
Gợi ý: Áp dụng bài tập 34
Cho tam giác DEF, điểm I nằm trong tam giác và cách đều ba cạnh của nó. Chứng minh I là điểm chung của ba đường phân giác của tam giác DEF
Nêu cách vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau. Vẽ hình minh họa
Cho hình 38
a) Tính góc KOL
b) Kẻ tia IO, hãy tính góc KIO
c) Điểm O có cách đều ba cạnh của tam giác IKL không? Vì sao?
Cho hình 39.
a) Chứng minh \(\Delta AB{\rm{D}} = \Delta AC{\rm{D}}\)
b) So sánh góc DBC và góc DCB
Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng
Hỏi trọng tâm của một tam giác đều có cách đều ba cạnh của nó hay không? Vì sao?
Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
Gợi ý: Trong tam giác ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn \(DA_1\) sao cho \(DA_1=AD\)
Đố: Có hai con đường cắt nhau và cùng cắt một con sông tại hai địa điểm khác nhau (h. 40)
Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho các khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhau
Có tất cả mấy địa điểm như vậy
Gọi M là điểm nằm trên đường trung trực của đoạn thẳng AB. Cho đoạn thẳng MA có độ dài 5cm. Hỏi độ dài MB bằng bao nhiêu?
Chứng minh đường thẳng PQ được vẽ như trong hình 43 đúng là đường trung trực của đoạn MN.
Gợi ý: Sử dụng định lí 2
Cho ba tam giác cân ABC, DBC, EBC có chung đáy BC. Chứng minh ba điểm A, D, E thẳng hàng.
Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB.
Chứng minh \(\Delta AMN = \Delta BMN\)
Hai điểm M và N cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng xy. Lấy điểm L đối xứng với M qua xy. Gọi I là một điểm của xy. Hãy so sánh IM+IN với LN
Hai nhà máy được xây dựng bên cùng một bờ sông tại hai địa điểm A và B (h. 44). Hãy tìm trên bờ sông đó một địa điểm C để xây dựng trạm bơm đưa nước về cho hai nhà máy, sao cho độ dài đường ống dẫn nước là ngắn nhất.
Một con đường quốc lộ cách không xa hai điểm dân cư (h. 45). Hãy tìm bên đường đó một địa điểm để xây dựng một trạm y tế sao cho trạm y tế này cách đều hai điểm dân cư
Cho đường thẳng d và điểm P không nằm trên d. Hình 46 minh họa cho cách dựng đường thẳng đi qua điểm P và vuông góc với đường thẳng d bằng thước và compa như sau:
(1) Vẽ đường tròn tâm P với bán kính thích hợp sao cho nó cắt d tại hai điểm A và B
(2) Vẽ hai đường tròn với bán kính bằng nhau có tâm tâm tại A và B sao cho chúng cắt nhau. Gọi một giao điểm của chúng là C \(\left( {C \ne P} \right)\)
(3) Vẽ đường thẳng PC
Em hãy chứng minh đường thẳng PC vuông góc với d
Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường trung trực ứng với cùng một cạnh thì tam giác đó là một tam giác cân
Ba gia đình quyết định đào chung một cái giếng (h. 50). Phải chọn vị trí của giếng ở đâu để các khoảng cách từ giếng đến các nhà bằng nhau?
Vẽ đường tròn đi qua ba đỉnh của tam giác ABC trong các trường hợp sau:
a) \(\widehat A,\widehat B,\widehat C\) đều nhọn
b) \(\widehat A = {90^o}\)
c) \(\widehat A > {90^o}\)
Cho hình 51.
Chứng minh ba điểm B, C, D thẳng hàng
Gợi ý: Chứng minh \(\widehat {ADB} + \widehat {ADC} = {180^o}\)
Sử dụng bài 55 để chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác vuông đó.
Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông
Có một chi tiết máy (mà đường viền ngoài là đường tròn) bị gãy (h. 52). Làm thế nào để xác định được bán kính của đường viền này?
Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm tâm của tam giác tù nằm ở bên ngoài tam giác
Cho hình 57.
a) Chứng minh \(N{\rm{S}} \bot LM\)
b) Khi \(\widehat {LNP} = {50^o}\), hãy tính góc MSP và góc PSQ
Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K). Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác với điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N.
Chứng minh rằng \(KN \bot IM\)
Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.
a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.
b) Tương tự, hãy lần lượt chỉ ra trực tâm của tam giác HAB và HAC.
Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Cho hình 11. Biết rằng AB
a) HB=HC
b) HB>HC
c) HB<HC
Cho hình 16. Hãy chứng minh rằng:
a) BE<BC
b) DE<BC
Copyright © 2021 HOCTAPSGK