Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4...

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4a\). Tính theo \(a\) khoảng cách giữa hai đường thẳng AD và SC. 

A. \(\dfrac{{a\sqrt {15} }}{2}\).    

B. \(\dfrac{{2a\sqrt 5 }}{5}\).   

C. \(\dfrac{{2{a^3}\sqrt {15} }}{3}\).       

D. \(\dfrac{{4a\sqrt {1365} }}{{91}}\).  

* Đáp án

D

* Hướng dẫn giải

Gọi \(I\) là trung điểm của AB \( \Rightarrow SI \bot AB\) (do tam giác SAB đều).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right)}\\{\left( {SAB} \right) \cap \left( {ABCD} \right) = AB}\\{\left( {SAB} \right) \supset SI \bot AB}\end{array}} \right.\) \( \Rightarrow SI \bot \left( {ABCD} \right)\).

+) Ta thấy \(AD\parallel BC{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow d\left( {AD;SC} \right)\)

\( = d\left( {AD;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right)\).

Mà \(AI \cap \left( {SBC} \right) = B \Rightarrow \dfrac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {I;\left( {SBC} \right)} \right)}} = \dfrac{{AB}}{{IB}} = 2\).

\( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\)

\( \Rightarrow d\left( {AD;SC} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\).

Trong \(\left( {ABCD} \right)\), kẻ \(IH \bot BC{\mkern 1mu} {\mkern 1mu} \left( {H \in BC} \right)\). Trong \(\left( {SIH} \right)\) kẻ \(IK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {K \in SH} \right)\) ta có:

\(\left\{ {\begin{array}{*{20}{l}}{BC \bot IH}\\{BC \bot SI{\mkern 1mu} {\mkern 1mu} \left( {SI \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow BC \bot \left( {SIH} \right) \Rightarrow BC \bot IK\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{IK \bot SH}\\{IK \bot BC}\end{array}} \right. \Rightarrow IK \bot \left( {SBC} \right)\)\( \Rightarrow d\left( {I;\left( {SBC} \right)} \right) = IK\).

Gọi \(O = AC \cap BD\) ta có \(AC \bot BD\) tại \(O\) và \(O\) là trung điểm của \(AC,{\mkern 1mu} {\mkern 1mu} BD\).

+) Tam giác AOB vuông tại \(O\) có \(AO = \dfrac{{AC}}{2} = a;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} BO = \dfrac{{BD}}{2} = 2a\).

\( \Rightarrow AB = \sqrt {O{A^2} + O{B^2}} \) \( = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} {\rm{\;}} = a\sqrt 5 {\rm{\;}} = BC\) (Định lí Pytago).

Ta có \({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}.2a.4a = 4{a^2}\).

\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}{S_{ABCD}} = 2{a^2}\)\( \Rightarrow {S_{IBC}} = \dfrac{1}{2}{S_{ABC}} = {a^2}\).

Mặt khác \({S_{IBC}} = \dfrac{1}{2}IH.BC \Rightarrow IH = \dfrac{{2{S_{IBC}}}}{{BC}}\)\( = \dfrac{{2{a^2}}}{{a\sqrt 5 }} = \dfrac{{2a\sqrt 5 }}{5}\). 

+) Tam giác SAB đều cạnh \(a\sqrt 5 \)\( \Rightarrow SI = \dfrac{{\sqrt 3 }}{2}.a\sqrt 5 {\rm{\;}} = \dfrac{{a\sqrt {15} }}{2}\).

+) Áp dụng hệ thức lượng trong tam giác vuông SIH ta có:

\(IK = \dfrac{{SI.IH}}{{\sqrt {S{I^2} + I{H^2}} }} = \dfrac{{\dfrac{{a\sqrt {15} }}{2}.\dfrac{{2a\sqrt 5 }}{5}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {15} }}{2}} \right)}^2} + {{\left( {\dfrac{{2a\sqrt 5 }}{5}} \right)}^2}} }}\)\( = \dfrac{{2a\sqrt {1365} }}{{91}}\).

Vậy \(d\left( {AD;SC} \right) = 2IK = \dfrac{{4a\sqrt {1365} }}{{91}}\).

Chọn D.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK