A. N
B. P
C. Q
D. M
A. \(\frac{{e - 2}}{4}\)
B. \(\frac{{e + 2}}{4}\)
C. \(\frac{{e - 2}}{2}\)
D. \(\frac{{e + 2}}{2}\)
A. (2;5;6)
B. (- 2;5;6)
C. (4;1;2)
D. (2;- 5;6)
A. \(\frac{4}{3}\ln \frac{{11}}{5}\)
B. \(\frac{4}{3}\ln 55\)
C. \(4\ln \frac{{11}}{5}\)
D. \(\frac{1}{3}\ln \frac{{11}}{5}\)
A. \(32\sqrt 2 \pi \)
B. \(128\sqrt 2 \pi \)
C. \(16\sqrt 2 \pi \)
D. \(64\sqrt 2 \pi \)
A. \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{3}{7}\)
B. \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = -\frac{3}{7}\)
C. \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = - \frac{4}{{21}}\)
D. \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{4}{{21}}\)
A. \(S = \int\limits_{ - 2}^1 {\left( { - 2{x^2} - 2x + 4} \right){\rm{d}}x} \)
B. \(S = \int\limits_{ - 2}^1 {\left( { - 4x - 6} \right){\rm{d}}x} \)
C. \(S = \int\limits_{ - 2}^1 {\left( {4x + 6} \right){\rm{d}}x} \)
D. \(S = \int\limits_{ - 2}^1 {\left( {2{x^2} + 2x - 4} \right){\rm{d}}x} \)
A. \({x^2} - \frac{1}{x} + C\)
B. \({x^2} + \ln x + C\)
C. \(2 + \frac{1}{x} + C\)
D. \(2x + 2\ln x + C\)
A. - 3
B. 13
C. - 8
D. - 11
A. \(\frac{{3 + {e^2} - {e^6}}}{3}\)
B. \(\frac{{2 + {e^2} - {e^6}}}{3}\)
C. \(\frac{{{e^6} - {e^2} - 3}}{3}\)
D. \(\frac{{{e^6} - {e^2} - 2}}{3}\)
A. 13
B. \(\sqrt {13} \)
C. 1
D. \(\sqrt 5 \)
A. \(-5i\)
B. - 8
C. - 5
D. \(-8i\)
A. \(\frac{1}{4}{x^4} - \frac{1}{3}{x^3} + C.\)
B. \({x^4} - {x^3} + C.\)
C. \(3{x^2} - 2x + C.\)
D. \(\frac{1}{3}{x^4} - \frac{1}{4}{x^3} + C.\)
A. \(V = \int\limits_0^3 {{{\left( {{x^2} + 5} \right)}^2}{\rm{d}}x} .\)
B. \(V = \pi \int\limits_0^3 {\left( {{x^2} + 5} \right){\rm{d}}x} .\)
C. \(V = \pi \int\limits_0^3 {{{\left( {{x^2} + 5} \right)}^2}{\rm{d}}x} .\)
D. \(V = \int\limits_0^3 {\left( {{x^2} + 5} \right){\rm{d}}x} .\)
A. \(\sqrt 3 \pi {a^3}\)
B. \(\sqrt 3 {a^3}\)
C. \(3\sqrt 3 \pi {a^3}\)
D. \(3\sqrt 3 {a^3}\)
A. - 3
B. - 15
C. 21
D. 3
A. \(2\sqrt 5 \)
B. 44
C. 6
D. \(2\sqrt {11} \)
A. \(S = \int\limits_1^e {{3^x}{\rm{d}}} x\)
B. \(S = \pi \int\limits_1^e {{3^x}{\rm{d}}} x\)
C. \(S = \pi \int\limits_1^e {{3^x}{\rm{d}}} x\)
D. \(S = \int\limits_1^e {{3^{2x}}{\rm{d}}} x\)
A. \(F\left( 4 \right) = 5 + \sqrt 2 \)
B. \(F\left( 4 \right) = 5 - \sqrt 2 \)
C. \(F\left( 4 \right) = 4 - 2\sqrt 2 \)
D. \(F\left( 4 \right) = 5 - 2\sqrt 2 \)
A. 5
B. - 3
C. - 1
D. 2
A. \(3x - 2y + z - 19 = 0\)
B. \(2x - y - 3z - 19 = 0\)
C. \(2x - y - 3z - 7 = 0\)
D. \(3x - 2y - z - 23 = 0\)
A. \(\frac{{{5^x}}}{{\ln 5}} - 4{{\rm{e}}^x} + 3x + C\)
B. \(\frac{{{5^x}}}{{\log 5}} - 4{{\rm{e}}^x} + 3x + C\)
C. \({5^x}\ln 5 - 4{{\rm{e}}^x} + C\)
D. \({5^x} - 4{{\rm{e}}^x} + 3 + C\)
A. \(7+8i\)
B. \(8+7i\)
C. \(8-7i\)
D. \(-7+8i\)
A. \({x^3} - 4\cos x + 5\sin x + C\)
B. \({x^3} + 4\cos x + 5\sin x + C\)
C. \({x^3} - 4\cos x - 5\sin x + C\)
D. \(6x - 4\cos x - 5\sin x + C\)
A. \(\frac{9}{2}\)
B. \(\frac{{13}}{6}\)
C. \(\frac{{17}}{3}\)
D. \(\frac{{13}}{3}\)
A. \(5+6i\)
B. \(-5+6i\)
C. \(-5-6i\)
D. \(5-6i\)
A. I = 10
B. I = 20
C. I = 30
D. I = 40
A. M
B. P
C. Q
D. N
A. \(5\sqrt 2 \)
B. \(\frac{{5\sqrt 2 }}{2}\)
C. \(5\sqrt 2 \pi \)
D. \(\frac{{5\pi \sqrt 2 }}{2}\)
A. \(3\pi {a^2}\)
B. \(6\pi {a^2}\)
C. \(\frac{{4\sqrt 5 \pi {a^2}}}{3}\)
D. \(12\pi {a^2}\)
A. \(2{x^2}\ln x + 3{x^2} + C\)
B. \(2{x^2}\ln x + {x^2} + C\)
C. \(2{x^2}\ln x - {x^2} + C\)
D. \(2{x^2}\ln x - 3{x^2} + C\)
A. \(28\pi {a^3}\)
B. \(\frac{{28\sqrt 7 }}{3}\pi {a^3}\)
C. \(\frac{{28}}{3}\pi {a^3}\)
D. \(\frac{{28\sqrt 7 }}{7}\pi {a^3}\)
A. \(a+c=0\)
B. \(2a + 3b - 7c = 2019\)
C. \(a+b+c=0\)
D. \(a+b=4\)
A. - 9
B. 6
C. 15
D. 3
A. \(\frac{{144}}{3}\pi \)
B. \(128\pi \)
C. \(72\pi\)
D. \(144\pi\)
A. 1
B. 2
C. - 1
D. - 2
A. \(f\left( c \right) > f\left( a \right) > f\left( b \right)\)
B. \(f\left( b \right) > f\left( a \right) > f\left( c \right)\)
C. \(f\left( c \right) > f\left( b \right) > f\left( a \right)\)
D. \(f\left( a \right) > f\left( c \right) > f\left( b \right)\)
A. - 1
B. - 2
C. 4
D. 0
A. \( - \sin 4x - \frac{2}{3}\sin 6x + C\)
B. \( - \frac{1}{2}\cos 4x - \frac{1}{3}\cos 6x + C\)
C. \(\frac{4}{5}\cos 5x.\sin x + C\)
D. \(\frac{1}{2}\cos 4x + \frac{1}{3}\cos 6x + C\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK