A. 1
B. 3
C. 0
D. - 1
A. 10
B. 12
C. 3
D. 4
A. \(V = 9\pi \)
B. \(V = 12\pi \)
C. \(V = 25\pi \)
D. \(V = 16\pi \)
A. \(\int {{2^x}dx = \frac{{{2^{x + 1}}}}{{x + 1}} + C} \)
B. \(\int {\sin xdx = - \cos x + C} \)
C. \(\int {dx = x + C} \)
D. \(\int {\frac{1}{x}dx = \ln \left| x \right| + C} \)
A. \(\left| {\overrightarrow {u\,} } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \)
B. \(\overrightarrow {u\,} .\overrightarrow {v\,} = \left( {x.x';y.y';z.z'} \right)\)
C. \(\overrightarrow {u\,} + \overrightarrow {v\,} = \left( {x + x';y + y';z + z'} \right)\)
D. \(\overrightarrow {u\,} - \overrightarrow {v\,} = \left( {x - x';y - y';z - z'} \right)\)
A. \(\frac{{x - 2}}{1} = \frac{y}{3} = \frac{{z + 3}}{5}\)
B. \(\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{3} = \frac{{z - 2}}{5}\)
C. \(\frac{{x - 2}}{1} = \frac{y}{{ - 3}} = \frac{{z + 3}}{5}\)
D. \(\frac{{x - 1}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{{ - 5}}\)
A. \(R = \sqrt 6 \)
B. R = 6
C. R = 362
D. R = 36
A. \(x - 2y - z + 5 = 0\)
B. \(x - 2y - z - 5 = 0\)
C. \(2x - y - z - 5 = 0\)
D. \(2x - y - z + 5 = 0\)
A. 15
B. 5
C. - 5
D. 2
A. m = - 1
B. m = 1
C. m = 0
D. m = 2
A. \({a^2} + {b^2} = 0\)
B. \({a^2} + {b^2} = 5\)
C. \({a^2} + {b^2} = 2\)
D. \({a^2} + {b^2} = 1\)
A. \(S = \frac{{124}}{3}\)
B. \(S = \frac{{3124}}{5}\)
C. \(S = \frac{{124}}{3}\pi \)
D. \(S = \frac{{3124}}{5}\pi \)
A. \(A - B + C = 5\)
B. \(A - B + C = -3\)
C. \(A - B + C = -5\)
D. \(A - B + C = 3\)
A. \(\int {\sin 3xdx = - \frac{1}{3}\cos 3x + C} \)
B. \(\int {\sin 3xdx = \frac{1}{3}\cos 3x + C} \)
C. \(\int {\sin 3xdx = - 3\cos 3x + C} \)
D. \(\int {\sin 3xdx = 3\cos 3x + C} \)
A. \(\overrightarrow {n\,} = \left( { - 2;2; - 10} \right)\)
B. \(\overrightarrow {n\,} = \left( {1; - 2;2} \right)\)
C. \(\overrightarrow {n\,} = \left( {1;2;2} \right)\)
D. \(\overrightarrow {n\,} = \left( {2; - 2;1} \right)\)
A. \(I\left( { - 2;4;4} \right)\)
B. \(I\left( {1; - 2; - 2} \right)\)
C. \(I\left( { - 1;2;2} \right)\)
D. \(I\left( {2; - 4; - 4} \right)\)
A. - 21
B. - 4
C. 4
D. 21
A. \(S = 32 - 33i\)
B. \(S = 33 - 32i\)
C. \(S = 32 + 33i\)
D. \(S = 33 + 32i\)
A. \(F(x) = \left( {\frac{{{x^2}}}{2} + x} \right)\ln x + \frac{{{x^2}}}{4} + x - \frac{1}{2}\)
B. \(F(x) = \left( {\frac{{{x^2}}}{2} + x} \right)\ln x - \frac{{{x^2}}}{4} - x + 2\)
C. \(F(x) = \ln x - \frac{{{x^2}}}{2} - x + \frac{9}{4}\)
D. \(F(x) = \ln x + \frac{{{x^2}}}{2} + x - \frac{3}{4}\)
A. (5;- 1)
B. (5;1)
C. (- 1;5)
D. (1;5)
A. S = 10
B. S = - 10
C. S = - 4
D. S = 4
A. \(\frac{{\sqrt {205} }}{{10}}\)
B. \(\frac{{\sqrt {210} }}{{10}}\)
C. \(\frac{{\sqrt {210} }}{{5}}\)
D. \(\frac{{\sqrt {205} }}{5}\)
A. \(f(x) = 6x - \frac{1}{{2\sqrt x }}\)
B. \(f(x) = {x^3} - \frac{1}{{2\sqrt x }}\)
C. \(f(x) = 6x + \frac{1}{{2\sqrt x }}\)
D. \(f(x) = {x^3} + \frac{1}{{2\sqrt x }}\)
A. \(\frac{{13}}{{10}}\)
B. \(\frac{{ - 11}}{{29}}\)
C. \(\frac{{ - 11}}{{10}}\)
D. \(\frac{{ 13}}{{29}}\)
A. \(I\left( {0;\sqrt 5 } \right)\)
B. I(2;0)
C. I(- 2;0)
D. \(I\left( {0;-\sqrt 5 } \right)\)
A. \(\overrightarrow {u\,} = \left( {1; - 3;2} \right)\)
B. \(\overrightarrow {u\,} = \left( {2; - 1;3} \right)\)
C. \(\overrightarrow {u\,} = \left( {2;1;3} \right)\)
D. \(\overrightarrow {u\,} = \left( {1;3;2} \right)\)
A. \(\left| z \right| = \sqrt {34} \)
B. \(\left| z \right| = \sqrt {35} \)
C. \(\left| z \right| = \sqrt {37} \)
D. \(\left| z \right| = \sqrt {31} \)
A. Nếu \(\Delta =0\) thì phương trình có nghiệm kép.
B. Nếu \(\Delta <0\) thì phương trình vô nghiệm.
C. Nếu \(\Delta \ne 0\) thì phương trình có hai nghiệm.
D. Nếu phương trình có hai nghiệm \(z_1, z_2\) thì \({z_1} + {z_2} = - \frac{b}{a}\).
A. \(S = \frac{{17}}{6}\)
B. \(S = \frac{{53}}{6}\)
C. \(S = \frac{{1}}{6}\)
D. \(S = \frac{{37}}{3}\)
A. \(\int\limits_a^b {f(x)dx = F(b) - F(a)} \)
B. \(\int\limits_a^b {f(x)dx = F(b) + F(a)} \)
C. \(\int\limits_a^b {f(x)dx = F(b).F(a)} \)
D. \(\int\limits_a^b {f(x)dx = F(a) - F(b)} \)
A. \(V = \pi \int\limits_2^5 {{e^{ - 2x}}dx} \)
B. \(V = \int\limits_2^5 {{e^{ - 2x}}dx} \)
C. \(V = \int\limits_2^5 {{e^{ - x}}dx} \)
D. \(V = \pi \int\limits_2^5 {{e^{ - x}}dx} \)
A. \(\int {\frac{{{t^2} + 3}}{t}dt} \)
B. \(\int {2\left( {{t^2} + 3} \right)dt} \)
C. \(\int {2t\left( {{t^2} + 3} \right)dt} \)
D. \(\int {\frac{{{t^2} + 3}}{2}dt} \)
A. \(d\left( {I;(P)} \right) < R\)
B. \(d\left( {I;(P)} \right) > R\)
C. \(d\left( {I;(P)} \right) = R\)
D. \(d\left( {I;(P)} \right) = 0\)
A. \(\left| w \right| = 25\)
B. \(\left| w \right| = 3\sqrt 2 \)
C. \(\left| w \right| = 5\)
D. \(\left| w \right| = 18\)
A. \(\left| z \right| = 2\)
B. \(\left| z \right| = 1\)
C. \(\left| z \right| = \sqrt 2 \)
D. \(\left| z \right| = 2\sqrt 2 \)
A. 54 m
B. 90 m
C. 72 m
D. 40 m
A. \(V = \frac{9}{2}\)
B. \(V = \frac{9}{2}\pi \)
C. \(V = \frac{{81}}{{10}}\)
D. \(V = \frac{{81}}{{10}}\pi \)
A. \(I = \frac{4}{{{e^2}}}\)
B. \(I = \frac{16}{{{e^3}}}\)
C. \(I = \frac{6}{{{e^2}}}\)
D. \(I = \frac{20}{{{e^3}}}\)
A. \(d = \frac{{6\sqrt {11} }}{{11}}\)
B. \(d = \frac{{5\sqrt {11} }}{{11}}\)
C. \(d = \frac{{3\sqrt {11} }}{{11}}\)
D. \(d = \frac{{4\sqrt {11} }}{{11}}\)
A. \(\left| {\bar z} \right| = 5\)
B. \(\left| {\bar z} \right| = 1\)
C. \(\left| {\bar z} \right| = 25\)
D. \(\left| {\bar z} \right| = 4\)
A. Đường tròn \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 13\)
B. Đường thẳng \(x + 5y - 4 = 0\)
C. Đường tròn \({\left( {x - 3} \right)^2} + {\left( {y + 3} \right)^2} = 5\)
D. Đường thẳng \(x + y - 4 = 0\)
A. \(\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 1}}{{ - 1}}\)
B. \(\frac{{x - 1}}{2} = \frac{{y + 2}}{1} = \frac{{z - 1}}{{ - 1}}\)
C. \(\frac{{x + 2}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{1}\)
D. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{1}\)
A. \({z_4} = 3 + 5i\)
B. \({z_4} = 7 - i\)
C. \({z_4} = 5 - 5i\)
D. \({z_4} = - 1 - i\)
A. \(45^0\)
B. \(60^0\)
C. \(30^0\)
D. \(90^0\)
A.
\(\left\{ \begin{array}{l}
x = 2 + 3t\\
y = 1 - t\\
z = - 2
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 3 + 2t\\
y = - 1 + t\\
z = - 2t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = - 3 + 2t\\
y = 1 + t\\
z = - 2t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 3t\\
y = 1 - t\\
z = - 2 + t
\end{array} \right.\)
A. \(abc=2\)
B. \(abc=4\)
C. \(abc=1\)
D. \(abc=0\)
A. \(\int {\frac{{{{\ln }^2}x}}{x}dx = 2\ln x + C} \)
B. \(\int {\frac{{{{\ln }^2}x}}{x}dx = 3{{\ln }^3}x + C} \)
C. \(\int {\frac{{{{\ln }^2}x}}{x}dx = \ln x + C} \)
D. \(\int {\frac{{{{\ln }^2}x}}{x}dx = \frac{{{{\ln }^3}x}}{3} + C} \)
A. \(I( - 2;2; - 4)\)
B. \(I(1;0;1)\)
C. \(I( - 1;1; - 2)\)
D. \(I(2;0;2)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK