Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\angle SBA = \angle SCA = {90^0}\).

Câu hỏi :

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\angle SBA = \angle SCA = {90^0}\). Biết góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Khoảng cách giữa hai đường thẳng SB AC là: 

A. \(\frac{{2\sqrt {51} }}{{17}}a\)

B. \(\frac{{2\sqrt 7 }}{7}a\)

C. \(\frac{{\sqrt {39} }}{{13}}a\)

D. \(\frac{{2\sqrt {13} }}{{13}}a\)

* Đáp án

A

* Hướng dẫn giải

Trong (ABC) gọi I là trung điểm của BC, gọi AH là đường kính đường tròn ngoại tiếp \(\Delta ABC\).

\( \Rightarrow HB \bot AB,HC \bot AC\) 

Ta có: \(\left\{ \begin{array}{l}
BH \bot AB\\
SB \bot AB
\end{array} \right. \Rightarrow AB \bot \left( {SBH} \right) \Rightarrow AB \bot SH\) 

Chứng minh tương tự ta có \(AC\bot SH\) 

\( \Rightarrow SH \bot \left( {ABC} \right)\) 

Trong (ABC) kẻ đường thẳng qua B song song với AC cắt HC tại M.

Ta có \(AC//BM \Rightarrow d\left( {SB;AC} \right) = d\left( {AC;\left( {SBM} \right)} \right) = d\left( {C;\left( {SBM} \right)} \right)\) 

Ta có \(CH \bot AC \Rightarrow CM \bot BM\) 

Xét tam giác vuông ACH có: \(CH = AC.\tan {30^0} = \frac{{a\sqrt 3 }}{3}\) 

Xét tam giác vuông BCM có: \(CM = BC.cos{30^0} = \frac{{a\sqrt 3 }}{2}\)

\(CH \cap \left( {SBM} \right) = M \Rightarrow \frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac{{HM}}{{CM}} = 1 - \frac{{CH}}{{CM}} = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\) 

Trong (SHM) kẻ \(HK \bot SM\,\,\left( {K \in SM} \right)\) ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
BM \bot HM\\
BM \bot SH
\end{array} \right. \Rightarrow BM \bot \left( {SHM} \right) \Rightarrow BM \bot HK\\
\left\{ \begin{array}{l}
HK \bot BM\\
HK \bot SM
\end{array} \right. \Rightarrow HK \bot \left( {SBM} \right) \Rightarrow d\left( {H;\left( {SBM} \right)} \right) = HK
\end{array}\) 

Ta có: \(\angle \left( {SA;\left( {ABC} \right)} \right) = \angle \left( {SA;HA} \right) = \angle SAH = {45^0}\) 

\( \Rightarrow \Delta SAH\) vuông cân tại \(H \Rightarrow SH = AH = \frac{{AC}}{{\cos {{30}^0}}} = \frac{{2a}}{{\sqrt 3 }}\)

\(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}\)

Áp dụng hệ thức lượng trong tam giác vuông SMH ta có:

\(HK = \frac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a}}{{\sqrt 3 }}.\frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{4{a^2}}}{3} + \frac{{3{a^2}}}{{36}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}{{51}}\) 

Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}{{17}}\) 

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK