A. \(m \in \left( {2; + \infty } \right)\)
B. \(m \in \left( { - 2; - 1} \right)\)
C. \(m \in \left( { - 2;0} \right)\)
D. \(m \in \left( {0;2} \right)\)
A. \(\frac{1}{2}{x^4} - 9x + C\)
B. \(4{x^4} - 9x + C\)
C. \(4{x^3} - 9x + C\)
D. \(\frac{1}{4}{x^4} + C\)
A. - 1
B. - 4
C. 20
D. - 2
A. \(F\left( x \right) = f\left( x \right) + C\), \(C\) là hằng số tùy ý.
B. \(F'\left( x \right) = f\left( x \right)\)
C. \(F\left( x \right) = f'\left( x \right)\)
D. \(F'\left( x \right) = f\left( x \right) + C\), \(C\) là hằng số tùy ý.
A. \( - \frac{{31}}{{10}}.\)
B. \( \frac{{30}}{{10}}.\)
C. \(\frac{{32}}{{10}}.\)
D. \(\frac{{31}}{{10}}.\)
A. 210 m
B. 48 m
C. 30 m
D. 35 m
A. 1
B. 6
C. 2
D. 3
A. \(I = 2\)
B. \(I = -1\)
C. \(I = -2\)
D. \(I = 0\)
A. \(\int {f\left( x \right){\rm{d}}x} = {e^{3x + 2}} + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = \left( {3x + 2} \right){e^{3x + 2}} + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{3}{e^{3x + 2}} + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = 3{e^{3x + 2}} + C\)
A. \(\int\limits_a^b {xf\left( x \right){\rm{d}}x} = - \frac{{a + b}}{2}\int\limits_a^b {f\left( x \right){\rm{d}}x} \)
B. \(\int\limits_a^b {xf\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} \)
C. \(\int\limits_a^b {xf\left( x \right){\rm{d}}x} = \frac{{a + b}}{2}\int\limits_a^b {f\left( x \right){\rm{d}}x} \)
D. \(\int\limits_a^b {xf\left( x \right){\rm{d}}x} = \left( {a + b} \right)\int\limits_a^b {f\left( x \right){\rm{d}}x} \)
A. \(74\pi \)
B. \(78\pi \)
C. \(72\pi \)
D. \(76\pi \)
A. \(\int\limits_a^c {f\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} + \int\limits_b^c {f\left( x \right){\rm{d}}x} .\)
B. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_a^c {f\left( x \right){\rm{d}}x} - \int\limits_b^c {f\left( x \right){\rm{d}}x} .\)
C. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_b^a {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} .\)
D. \(\int\limits_a^b {cf\left( x \right){\rm{d}}x} = - c\int\limits_b^a {f\left( x \right){\rm{d}}x} \)
A. \(I=1\)
B. \(I=0\)
C. \(I=e-1\)
D. \(I=e\)
A. 3
B. 9
C. 10
D. 11
A. 30
B. 28
C. 36
D. 12
A. \(I = - \int\limits_0^1 {{u^2}{\rm{d}}u} \)
B. \(I = 2\int\limits_0^1 {u{\rm{d}}u} \)
C. \(I = - \int\limits_{ - 1}^0 {{u^2}{\rm{d}}u} \)
D. \(I = \int\limits_0^1 {{u^2}{\rm{d}}u} \)
A. \(P = 15\)
B. \(P = 37\)
C. \(P = - 8089\)
D. \(P = 8089\)
A. \(V = \pi \int\limits_a^b {f(x)dx} .\)
B. \(V = \int\limits_a^b {{f^2}(x)dx} .\)
C. \(V = \pi \int\limits_a^b {{f^2}(x)dx} .\)
D. \(V = \int\limits_a^b {\left| {f(x)} \right|dx} .\)
A. \(S=1\)
B. \(S=0\)
C. \(S=-1\)
D. \(S=2\)
A. \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x.} \)
B. \(S = \pi \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x.} \)
C. \(S = \pi \int\limits_a^b {{f^2}\left( x \right){\rm{d}}x.} \)
D. \(S = \int\limits_a^b {f\left( x \right){\rm{d}}x.} \)
A. \(F\left( {\frac{\pi }{2}} \right) = 2\)
B. \(F\left( {\frac{\pi }{2}} \right) = 0\)
C. \(F\left( {\frac{\pi }{2}} \right) = 1\)
D. \(F\left( {\frac{\pi }{2}} \right) = -1\)
A. \(\pi \int\limits_0^2 {4{x^2}{\rm{d}}x} + \pi \int\limits_0^2 {{x^4}{\rm{d}}x} \)
B. \(\pi \int\limits_0^2 {\left( {2x - {x^2}} \right){\rm{d}}x} \)
C. \(\pi \int\limits_0^2 {4{x^2}{\rm{d}}x} - \pi \int\limits_0^2 {{x^4}{\rm{d}}x} \)
D. \(\pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}{\rm{d}}x} \)
A. \(F\left( 2 \right) = 23\)
B. \(F\left( 2 \right) = \frac{{86}}{7}\)
C. \(F\left( 2 \right) = \frac{{45}}{2}\)
D. \(F\left( 2 \right) = \frac{{151}}{4}\)
A. \(\left( {0; - 2} \right)\) và \(\left( {\frac{5}{2};8} \right)\)
B. \(\left( {0; - 1} \right)\) và \(\left( {\frac{5}{2};9} \right)\)
C. \(\left( {0; - 2} \right)\) và \(\left( {\frac{8}{3};14} \right)\)
D. \(\left( {0; - 1} \right)\) và \(\left( {\frac{5}{2};3} \right)\)
A. \(F\left( x \right) = \frac{1}{2}x - \frac{1}{8}\sin 4x + C\)
B. \(F\left( x \right) = \frac{1}{2}x + \frac{1}{8}\sin 4x + C\)
C. \(F\left( x \right) = \frac{1}{2}x - \frac{1}{8}\sin 4x\)
D. \(F\left( x \right) = \frac{1}{2}x - \frac{1}{8}{\rm{cos}}4x + C\)
A. \(y = \frac{1}{x}\)
B. \(y = x\ln x - x + C,C \in R\)
C. \(y = x\ln x - x\)
D. \(y = \frac{1}{x} + C,C \in R\)
A. \(m = - 1,{\rm{ }}m = - 6\)
B. \(m = - 1,{\rm{ }}m = 6\)
C. \(m = 1,{\rm{ }}m = - 6\)
D. \(m = 1,{\rm{ }}m = 6\)
A. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right){\rm{d}}x} \)
B. \(V = \int\limits_0^1 {\sqrt {2x + 1} {\rm{d}}x} \)
C. \(V = \int\limits_0^1 {\left( {2x + 1} \right){\rm{d}}x} \)
D. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} {\rm{d}}x} \)
A. \(S = \int\limits_a^b {(f(x) + g(x))} dx\)
B. \(S = \pi \int\limits_a^b {(f(x) - g(x))} dx\)
C. \(S = \int\limits_a^b {\left| {f(x) - g(x)} \right|} dx\)
D. \(S = \int\limits_a^b {(f(x) - g(x))} dx\)
A. \(\frac{1}{6}\)
B. \(\frac{1}{7}\)
C. \(-\frac{1}{6}\)
D. \(\frac{1}{8}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK