A. \(F\left( x \right) = \frac{1}{2}{e^{{x^2}}} + 2\)
B. \(F\left( x \right) = \frac{1}{2}\left( {{e^{{x^2}}} + 5} \right)\)
C. \(F\left( x \right) = - \frac{1}{2}{e^{{x^2}}} + C\)
D. \(F\left( x \right) = - \frac{1}{2}\left( {2 - {e^{{x^2}}}} \right)\)
A. \(F\left( x \right) = 5{x^6} + C\)
B. \(F\left( x \right) = 35{x^6} + C\)
C. \(F\left( x \right) = 35{x^4} + C\)
D. \(F\left( x \right) = \frac{7}{6}{x^6} + C\)
A. \(\ln \left| {2x + 3} \right| + C\)
B. \(\frac{1}{2}\ln \left( {2x + 3} \right) + C\)
C. \(\frac{1}{2}\ln \left| {2x + 3} \right| + C\)
D. \(2\ln \left| {2x + 3} \right| + C.\)
A. \(\int {f\left( x \right)g\left( x \right){\rm{d}}x = } \int {f\left( x \right){\rm{d}}x.\int {g\left( x \right){\rm{d}}x} } \)
B. \(\int {2f\left( x \right){\rm{d}}x = 2} \int {f\left( x \right){\rm{d}}x} \)
C. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x = } \int {f\left( x \right){\rm{d}}x + \int {g\left( x \right){\rm{d}}x} } \)
D. \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x = } \int {f\left( x \right){\rm{d}}x - \int {g\left( x \right){\rm{d}}x} } \)
A. \(f\left( x \right) = 2x - \sin 2x + \pi \)
B. \(f\left( 0 \right) = \pi \)
C. \(f\left( { - \frac{\pi }{2}} \right) = 0\)
D. \(f\left( x \right) = 2x + \frac{1}{2}\sin 2x + \pi \)
A. \(\int\limits_a^b {f(x){\rm{d}}x = \int\limits_a^b {f(y){\rm{d}}y} } .\)
B. \(\int\limits_a^b {\left( {f(x) + g(x)} \right){\rm{d}}x} = \int\limits_a^b {f(x){\rm{d}}x + \int\limits_a^b {g(x){\rm{d}}x} } .\)
C. \(\int\limits_a^a {f(x){\rm{d}}x = 0} .\)
D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_a^c {f\left( x \right){\rm{d}}x + \int\limits_b^c {f\left( x \right){\rm{d}}x} } .\)
A. \(\frac{5}{3}\)
B. \(\frac{10}{3}\)
C. \(\frac{5}{6}\)
D. \(\frac{4}{3}\)
A. \(I = \frac{1}{2}\left( {\ln 2 - 1} \right)\)
B. \(I = - 1 + \ln 2\)
C. I = ln2
D. \(I = \frac{1}{2}\ln 2\)
A. 20
B. 12
C. -4
D. 16
A. a < 5
B. b > 4
C. a + b < 1
D. a2 + b2 > 50
A. \(5 + \pi \)
B. \(5 + \frac{\pi }{2}\)
C. 7
D. 3
A. I = 2017
B. I = 1009
C. I = 2018
D. I = 1008
A. \(\int\limits_0^3 {f\left( x \right)} dx = - a\)
B. \(\int\limits_{ - 3}^3 {f\left( x \right)} dx = 2a\)
C. \(\int\limits_{ - 3}^3 {f\left( x \right)} dx = a\)
D. \(\int\limits_3^0 {f\left( x \right)} dx = a\)
A. \(\frac{{17}}{8}\)
B. \(\frac{{17}}{4}\)
C. \(\frac{{15}}{4}\)
D. \(\frac{{15}}{8}\)
A. \(S = \left| {\int\limits_{ - 1}^1 {\left( {3x - {x^3}} \right){\rm{d}}x} } \right|.\)
B. \(S = \int\limits_{ - 1}^1 {\left( {3x - {x^3}} \right){\rm{d}}x} .\)
C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 3x} \right){\rm{d}}x + \int\limits_0^1 {\left( {3x - {x^3}} \right){\rm{d}}x} } .\)
D. \(S = \int\limits_{ - 1}^0 {\left( {3x - {x^3}} \right){\rm{d}}x + \int\limits_0^1 {\left( {{x^3} - 3x} \right){\rm{d}}x} } .\)
A. \(V = \frac{\pi }{3}\)
B. \(V = \frac{\pi }{4}\)
C. \(V = \pi \)
D. \(V = \frac{\pi }{5}\)
A. \(\frac{{{\pi ^2}}}{3} - \pi \sqrt 3 .\)
B. \(\pi \sqrt 3 - \frac{{{\pi ^2}}}{3}.\)
C. \(\sqrt 3 - \frac{\pi }{3}\)
D. \(\frac{\pi }{3} - 3\)
A. \(V = \pi {R^3}\
B. \(V = \frac{{\pi \)R^3}}}{2}$
C. \(V = \frac{{5\pi {R^3}}}{{12}}\)
D. \(V = \frac{{2\pi {R^3}}}{5}\)
A. 52 (m/s)
B. 75 (m/s)
C. 48 (m/s)
D. 72 (m/s)
A. \(\frac{{100}}{3}\pi \left( {d{m^3}} \right)\)
B. \(132\pi \left( {d{m^3}} \right)\)
C. \(41\pi \left( {d{m^3}} \right)\)
D. \(43\pi \left( {d{m^3}} \right)\)
A. 1 - 2i
B. 2 - 4i
C. 2 + 4i
D. 1 + 2i
A. \(\overline z = 13 - 18i\)
B. \(\overline z = 13 + 18i\)
C. \(\overline z =-13 + 18i\)
D. \(\overline z = -13 - 18i\)
A. \(\frac{1}{z} = \frac{1}{4} + \frac{{\sqrt 3 }}{4}i\)
B. \(\fraac{1}{z} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\)
C. \(\fraac{1}{z} = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\)
D. \(\frac{1}{z} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\)
A. \(2\sqrt 5 \)
B. \(\sqrt {13} \)
C. \(2\sqrt 10 \)
D. \(2\sqrt 2 \)
A. (x; y) = (4; 6)
B. (x; y) = (5; -4)
C. (x; y) = (6; -4)
D. (x; y) = (6; 4)
A. M = 0
B. M = -21001
C. M = 21001
D. M = 21001i
A. \(\frac{3}{{2\sqrt 2 }}\)
B. \({3\sqrt 2 }\)
C. \(\frac{{3\sqrt 2 }}{2}\)
D. \(\frac{3}{2}\)
A. Đường tròn tâm I(0; 1), bán kính R = 1
B. Đường tròn tâm \(I\left( {\sqrt 3 ;0} \right)\), bán kính \(R = \sqrt 3 \)
C. Parabol \(y = \frac{{{x^2}}}{4}.\)
D. Parabol \(x = \frac{{{y^2}}}{4}.\)
A. (2; -1; 2)
B. (-2; 1; 2)
C. (2; -1; -2)
D. (-2; -1; 2)
A. \(\overrightarrow u = ( - 1; - 2; - 3)\)
B. \(\overrightarrow u = ( 1; 2; 3)\)
C. \(\overrightarrow u = ( 0; 2; 4)\)
D. \(\overrightarrow u = ( 0; 2; 2)\)
A. 1
B. -1
C. 0
D. -2
A. 2x + 6y - 4z + 1 = 0
B. x - 2y + 3 = 0.
C. 3x - 6y + 9z - 1 = 0.
D. 2x - 4y + 6z + 5 = 0.
A. \(\left( {{P_1}} \right):x - 2y + z - 1 = 0\)
B. \(\left( {{P_3}} \right):2x - y + z - 1 = 0\)
C. \(\left( {{P_2}} \right):x - y + z - 1 = 0\)
D. \(\left( {{P_4}} \right): - 2x - y = 0\)
A. \(\frac{x}{2} + \frac{y}{{ - 3}} + \frac{z}{5} = 0\)
B. \(\frac{x}{2} - \frac{y}{3} + \frac{z}{5} = 1\)
C. 2x - 3y + 5z = 1
D. 2x - 3y + 5z = 0
A. M(1; 2; 1)
B. N(1; -1; 2)
C. P(1; 1; -2)
D. Q(-1; -1; -2)
A. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{z}{{ - 3}}\)
B. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{z}{{ - 3}}\)
C. \(\frac{{x - 2}}{{ - 1}} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\)
D. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\)
A. \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}.\)
B. \(d:\frac{{x - 1}}{4} = \frac{{y + 1}}{1} = \frac{{z - 3}}{4}.\)
C. \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{2} = \frac{{z - 3}}{3}.\)
D. \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 3}}{3}.\)
A. d(M,(P)) = 2
B. \(d\left( {M,\;\left( P \right)} \right) = \frac{2}{3} \cdot \)
C. \(d\left( {M,\;\left( P \right)} \right) = \frac{10}{3} \cdot \)
D. d(M,(P)) = 3
A. \(\frac{{AM}}{{BM}} = \frac{1}{3}\)
B. \(\frac{{AM}}{{BM}} = 2\)
C. \(\frac{{AM}}{{BM}} = \frac{1}{2}\)
D. \(\frac{{AM}}{{BM}} = 3\)
A. I(2; 4;-1)
B. I(1; 2; 0)
C. I(1; 0; 0)
D. I(0; 0; 1)
A. (-2; 0 ; 0)
B. (0; 6; 0)
C. (6; 0 ; 0)
D. (4; 0; 0)
A. K(4;-3; -3)
B. K(-4; 3; -3)
C. K(4;-3; 3)
D. K(4; 3; 3)
A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 3\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\)
C. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\)
D. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\)
A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 9.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\)
C. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\)
D. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)
A. R = 1
B. \(R = \sqrt 2 .\)
C. R = 2
D. \(R = 2\sqrt 2 .\)
A. 4 mặt phẳng.
B. 6 mặt phẳng.
C. 7 mặt phẳng.
D. 9 mặt phẳng.
A. D(3; 6; -1)
B. D(3; -2; -1)
C. D(15; 22; -1)
D. D(3; 6; 4)
A. \(r = \frac{3}{{\sqrt 2 }}.\)
B. \(r = \sqrt {\frac{5}{2}} .\)
C. \(r = \sqrt 3 .\)
D. \(r = \sqrt {\frac{7}{2}} .\)
A. \(\frac{3}{2}\)
B. \(\frac{{\sqrt 3 }}{2}\)
C. \(\frac{1}{2}\)
D. \(\frac{{\sqrt 2 }}{2}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK