A.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu x>0.
B.Với n \[n \in {N^ * }\]thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu \[x \ge 0\].
C.Với \[n \in {N^ * }\] thì n \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu x0.
D.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu \[x \ne 0\].
A.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
B.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
C.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R \setminus \left\{ 0 \right\}\] với mọi \[\alpha \in R\].
D.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = \left( {0; + \infty } \right)\] với mọi \[\alpha \] không nguyên.
A.x<0
B.x>0
C.\[x \ge 0\]
D.\[x \in R\]
A.\[y = \frac{1}{{{x^4}}}\]
B. \[y = {x^{ - \sqrt 2 }}\]
C. \[y = {e^x}\]
D. \[y = {x^\pi }\]
A.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] đồng biến trên \[\left( {0; + \infty } \right)\]nếu \[\alpha >
B.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] nghịch biến trên \[\left( {0; + \infty } \right)\] nếu \[\alpha >
C.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] đồng biến trên \[\left( {0; + \infty } \right)\] nếu \[\alpha \ne 0\].
D.Hàm số \[y = {x^\alpha }\left( {\alpha \ne 0} \right)\] nghịch biến trên \[\left( {0; + \infty } \right)\] nếu \[0 >
A.đường thẳng
B.đường tròn
C.đường elip
D.đường cong
A.Đồ thị hàm số luôn đi qua điểm M(1;1)
B.Hàm số luôn đồng biến trên \[\left( {0; + \infty } \right)\;\]
C.Tập xác định của hàm số là \[D = \left( {0; + \infty } \right)\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]
D.Đồ thị hàm số nhận Ox,Oy làm hai tiệm cận
A.\[\alpha = 0\]
B. \[\alpha = 1\]
C. \[\alpha > 1\]
D. \[0 < \alpha < 1\]
</>
A.\[y' = \alpha {x^{\alpha - 1}}\]
B. \[y' = \left( {\alpha - 1} \right){x^{\alpha - 1}}\]
C. \[y' = \alpha {x^\alpha }\]
D. \[y' = \alpha {x^\alpha } - 1\]
A.\[D = R \setminus \left\{ 2 \right\}\]
B. \[D = R\]
C. \[D = \left[ {3; + \infty } \right)\]
D. \[D = \left( {3; + \infty } \right)\]
A.\[D = R \setminus \left\{ { \pm 2} \right\}\]
B. \[D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\]
C. \[D = \left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right)\]
D. \[D = R\]
A.\[P = {x^2}\]
B. \[P = \sqrt x \]
C. \[P = {x^{\frac{1}{3}}}\]
D. \[P = {x^{\frac{1}{{18}}}}\]
A.\[f'\left( 0 \right) = - \frac{2}{{3\sqrt[3]{2}}}\]
B. \[f'\left( 2 \right) = \frac{{10}}{{3\sqrt[3]{4}}}\]
C. \[f'\left( { - 3} \right) = - \frac{{10}}{{3\sqrt[3]{4}}}\]
D. \[f'\left( 3 \right) = \frac{{14}}{{3\sqrt[3]{{10}}}}\]
A.c<b<a<0
</b<a<0 >
B.0<c<b<a<1
</c<b<a<1
C.1<c<b<a
</c<b<a
D.0<a<b<c<1
</a<b<c<1
A.\[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với \[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
B. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
C. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với\[x \in R\]
D. \[y' = \frac{{3\left( {4x + 1} \right)}}{{2\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]
A.\[y'' + 2y = 0\]
B. \[y'' - 6{y^2} = 0\]
C. \[2y'' - 3y = 0\]
D. \[{\left( {y''} \right)^2} - 4y = 0\]
A.\[P = 2016\]
B. \[P = 1009\]
C. \[P = 2018\]
D. \[P = {2018^2}\]
A.\[y = {x^{ - \frac{1}{2}}}\]
B. \[y = {x^{ - \frac{4}{3}}}\]
C. \[y = {x^{ - 2}}\]
d. \[y = {x^{\frac{1}{3}}}\]
A.\[y = \frac{\pi }{2}x + 1\]
B. \[y = \frac{\pi }{2}x - \frac{\pi }{2} + 1\]
C. \[y = \pi x - \pi + 1\]
D. \[y = - \frac{\pi }{2}x + \frac{\pi }{2} + 1\]
Cho aa là số thực tùy ý và b,c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số \[y = lo{g_b}x;y = lo{g_c}x;y = {x^a}(x > 0)\] Khẳng định nào sau đây đúng?
A.a<c<b
B.a<b<c
C.a>b>c
D.a>c>b
Cho aa là số thực tùy ý và b,c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số \[y = lo{g_b}x;y = lo{g_c}x;y = {x^a}(x > 0)\] Khẳng định nào sau đây đúng?
A.a<c<b
B.a<b<c
C.a>b>c
D.a>c>b
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK