Trang chủ Đề thi & kiểm tra Khác Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm !!

Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm !!

Câu hỏi 1 :

Chọn công thức đúng:

A.\[\smallint udv = uv + \smallint vdu\]

B. \[\smallint udv = uv - \smallint vdu\]

C. \[\smallint udv = \smallint uv - \smallint vdu\]

D. \[\smallint udv = \smallint uvdv - \smallint vdu\]

Câu hỏi 2 :

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

A.\(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{du = g\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{du = \smallint g\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)

Câu hỏi 3 :

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

A.\[I = \left( {x + 1} \right)f\left( x \right) - 2F\left( x \right) + C\]

B. \[I = F\left( x \right) - \left( {x + 1} \right)f\left( x \right)\]

C. \[I = \left( {x + 1} \right)f\left( x \right) + C\]

D. \[I = \left( {x + 1} \right)f\left( x \right) - F\left( x \right) + C\]

Câu hỏi 4 :

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

A.\[\smallint f(x)dx = {x^3}\ln 3x - \frac{{{x^3}}}{3} + C\]

B. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{9} + C\]

C. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{3} + C\]

D. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{{27}} + C\]

Câu hỏi 7 :

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

A.\[F\left( x \right) = \frac{{{2^x} + \ln 2 - 1}}{{{e^x}\left( {\ln 2 - 1} \right)}}\]

B. \[F\left( x \right) = \frac{1}{{\ln 2 - 1}}{\left( {\frac{2}{e}} \right)^x} + {\left( {\frac{1}{e}} \right)^x} - \frac{1}{{\ln 2 - 1}}\]

C. \[F\left( x \right) = \frac{{{2^x} + \ln 2}}{{{e^x}\left( {\ln 2 - 1} \right)}}\]

D. \[F\left( x \right) = {\left( {\frac{2}{e}} \right)^x}\]

Câu hỏi 8 :

\[\smallint x\sin x\cos xdx\]bằng:

A.\[\frac{1}{2}\left( {\frac{1}{4}\sin 2x - \frac{x}{2}\cos 2x} \right) + C\]

B. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x - \frac{x}{4}\cos 2x} \right) + C\]

C. \[\frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{2}\cos 2x} \right) + C\]

D. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{4}\cos 2x} \right) + C\]

Câu hỏi 9 :

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

A.F(x) là hàm chẵn.

B.F(x) là hàm lẻ.

C.F(x) là hàm tuần hoàn với chu kì 2π.

D.F(x) không là hàm chẵn cũng không là hàm lẻ.

Câu hỏi 10 :

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

A.\[2\left( {\sqrt x \sin \sqrt x - \cos \sqrt x } \right) + C\]

B. \[2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C\]

C. \[\sqrt x \sin \sqrt x + \cos \sqrt x + C\]

D. \[\sqrt x \sin \sqrt x - \cos \sqrt x + C\]

Câu hỏi 11 :

Tính \[I = \smallint x{\tan ^2}xdx\] ta được:

A.\[ - \frac{1}{2}{x^2} + x\tan x + \ln \left| {\cos x} \right| + C\]

B. \[ - \frac{1}{2}{x^2} + x\tan x - \ln \left| {\cos x} \right| + C\]

C. \[\frac{1}{2}{x^2} + x\tan x - \ln \left| {\cos x} \right| + C\]

D. \[\frac{1}{2}{x^2} - x\tan x + \ln \left| {\cos x} \right| + C\]

Câu hỏi 12 :

Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{x}{{{{\cos }^2}x}}\] thỏa mãn F(0)=0. Tính \[F(\pi )?\]

A.\[F\left( \pi \right) = - 1\]

B. \[F\left( \pi \right) = \frac{1}{2}\]

C. \[F\left( \pi \right) = 1\]

D. \[F\left( \pi \right) = 0\]

Câu hỏi 13 :

Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:

A.\[x\ln \left( {x + \sqrt {{x^2} + 1} } \right) - \sqrt {{x^2} + 1} + C\]

B. \[\ln \left( {x + \sqrt {{x^2} + 1} } \right) - \sqrt {{x^2} + 1} + C\]

C. \[x\ln \left( {x + \sqrt {{x^2} + 1} } \right) + \sqrt {{x^2} + 1} + C\]

D. \[\ln \left( {x + \sqrt {{x^2} + 1} } \right) + \sqrt {{x^2} + 1} + C\]

Câu hỏi 14 :

Nguyên hàm của hàm số \[f(x) = \cos 2x\ln \left( {\sin x + \cos x} \right)dx\]  là:

A.\[I = \frac{1}{2}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \frac{1}{4}\sin 2x + C\]

B. \[I = \frac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \frac{1}{2}\sin 2x + C\]

C. \[I = \frac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) - \frac{1}{4}\sin 2x + C\]

D. \[I = \frac{1}{4}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right) + \frac{1}{4}\sin 2x + C\]

Câu hỏi 15 :

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

A.\[\frac{{{e^{2x}}}}{{13}}\left( {2\sin 3x + 3\cos 3x} \right) + C\]

B. \[\frac{{{e^{2x}}}}{{13}}\left( {3\sin 3x - 2\cos 3x} \right) + C\]

C. \[\frac{{{e^{2x}}}}{{13}}\left( {2\sin 3x - 3\cos 3x} \right) + C\]

D. \[\frac{{{e^{2x}}}}{{13}}\left( {3\sin 3x + 2\cos 3x} \right) + C\]

Câu hỏi 16 :

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

A.\[F\left( x \right) = x{e^x} + 1 - \ln \left| {x{e^x} + 1} \right| + C\]

B. \[F\left( x \right) = {e^x} + 1 - \ln \left| {x{e^x} + 1} \right| + C\]

C. \[F\left( x \right) = x{e^x} + 1 - \ln \left| {x{e^{ - x}} + 1} \right| + C\]

D. \[F\left( x \right) = x{e^x} + 1 + \ln \left| {x{e^x} + 1} \right| + C\]

Câu hỏi 17 :

Tính \[\smallint \frac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx\]?

A.\[\frac{x}{{{x^2} + 1}} + C\]

B. \[\frac{{2x}}{{{x^2} + 1}} + C\]

C. \[\frac{{ - x}}{{{x^2} + 1}} + C\]

D. \[\frac{{ - 2x}}{{{x^2} + 1}} + C\]

Câu hỏi 19 :

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

A.\[\left( {x + 1} \right){e^x} + C\]

B. \[\left( {x + 1} \right){e^x} - x + C\]

C. \[\left( {x + 2} \right){e^x} - x + C\]

D. \[\left( {x + 1} \right){e^x} + x + C\]

Câu hỏi 20 :

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 1 \right) = 0,\;F(x) = {[f(x)]^{2020}}\] là một nguyên hàm của \[2020x.{e^x}\]. Họ các nguyên hàm của \[{f^{2020}}(x)\;\] là:

A.\[2020\left( {x - 2} \right){e^x} + C\]

B. \[x{e^x} + C\]

C. \[2020\left( {x + 2} \right){e^x} + C\]

D. \[\left( {x - 2} \right){e^x} + C\]

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK