A. 180
B. 343
C. 210
D. 294
A. \(M'N' = 3MN\)
B. \(MN = 3M'N'\)
C. \(MN = \dfrac{1}{9}M'N'\)
D. \(M'N' = \dfrac{1}{3}MN\)
A. \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\)
B. \(x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)
C. \(x = \pm \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)
D. \(x = \pm \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\)
A. \(x = \dfrac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)
B. \(x = \dfrac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
C. \(x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\)
D. \(x = k\pi \left( {k \in \mathbb{Z}} \right)\)
A. 2401
B. 588
C. 168
D. 24
A. \( - 1 < m < 0\)
B. \(m < - 1\)
C. \(\left[ \begin{array}{l}m \ge 0\\m \le - 1\end{array} \right.\)
D. \(m > 0\)
A. 30
B. 20
C. 24
D. 10
A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R}\backslash \left\{ {\pi + k2\pi ,k \in \mathbb{Z}} \right\}\)
A. \(\min y = - 1,\max y = 2\)
B. \(\min y = - 3,\max y = - 1\)
C. \(\min y = - 2,\max y = 4\)
D. \(\min y = - 4,\max y = 2\)
A. \(\left\{ \begin{array}{l}x' + b = x + a\\y' + a = y + b\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = x' + a\\y = y' + b\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x' - b = x - a\\y' - a = y - b\end{array} \right.\)
A. \(x = 35^\circ + k180^\circ \left( {k \in \mathbb{Z}} \right)\)
B. \(x = 25^\circ + k90^\circ \left( {k \in \mathbb{Z}} \right)\)
C. \(x = 10^\circ + k90^\circ \left( {k \in \mathbb{Z}} \right)\)
D. \(x = \dfrac{{5\pi }}{{36}} + \dfrac{{k\pi }}{3}\left( {k \in \mathbb{Z}} \right)\)
A. \(\left\{ {\dfrac{\pi }{3} + \dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)
B. \(\left\{ { - \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)
C. \(\left\{ {\dfrac{\pi }{3} + k2\pi ;k \in \mathbb{Z}} \right\}\)
D. \(\left\{ {\dfrac{\pi }{6} + \dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)
A. 2
B. 4
C. 1
D. 3
A. \(\overrightarrow {M'N'} = k\overrightarrow {MN} \) và \(M'N' = - kMN\)
B. \(\overrightarrow {M'N'} = k\overrightarrow {MN} \) và \(M'N' = \left| k \right|MN\)
C. \(\overrightarrow {M'N'} = \left| k \right|\overrightarrow {MN} \) và \(M'N' = kMN\)
D. \(\overrightarrow {M'N'} //\overrightarrow {MN} \) và \(M'N' = \dfrac{1}{2}MN\)
A. 14
B. 48
C. 40
D. 42
A. \(\sin \left( {2x + \dfrac{\pi }{4}} \right) = - \dfrac{1}{2}\)
B. \(\sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\)
C. \(\sin \left( {2x + \dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }}\)
D. \(\sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\)
A. 380
B. 40
C. 342
D. 400
A. \(\left[ {0;1} \right]\)
B. \(\left( { - 1;1} \right)\)
C. \(\left( {0;1} \right)\)
D. \(\left[ { - 1;1} \right]\)
A. \(D = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\)
B. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\)
C. \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)
D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)
A. 2
B. 3
C. 1
D. Vô số
A. 20
B. 576
C. 144
D. 96
A. \( - x + y + 9 = 0\)
B. \(x + y + 9 = 0\)
C. \(x - y + 9 = 0\)
D. \(x + y - 9 = 0\)
A. \(A\left( {2;6} \right)\)
B. \(A\left( {2; - 6} \right)\)
C. \(A\left( { - 2; - 6} \right)\)
D. \(A\left( { - 2;6} \right)\)
A. \(A'B' = \sqrt {26} \)
B. \(A'B' = \sqrt {16} \)
C. \(A'B' = \sqrt {24} \)
D. \(A'B' = \sqrt 2 \)
A. \(\cot {\rm{x}} = \sqrt 2 \)
B. \(\cos x = \dfrac{2}{3}\)
C. \(\cos x = \sqrt 3 \)
D. \(\sin 2{\rm{x}} = - \dfrac{{\sqrt 2 }}{2}\)
A. 32
B. 12
C. 214
D. 28
A. \(A'\left( {5; - 5} \right)\)
B. \(A'\left( {5;0} \right)\)
C. \(A'\left( { - 5;0} \right)\)
D. \(A'\left( {0; - 5} \right)\)
A. \(x = \dfrac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
B. \(x = - \dfrac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)
C. \(x = \dfrac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)
D. \(x = - \dfrac{\pi }{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
A. Bốn
B. Một
C. Ba
D. Hai
A. 1
B. 6
C. 4
D. 2
A. \(C_{30}^2.C_{20}^1\)
B. \(C_{50}^3 - C_{20}^3\)
C. \(C_{50}^3 - C_{30}^3\)
D. \(C_{50}^3.C_{30}^3\)
A. \(4\)
B. \(1\)
C. \(5\)
D. \( - 5\)
A. \(\overrightarrow {OM} = k\overrightarrow {OM'} \)
B. \(\overrightarrow {OM'} = k\overrightarrow {OM} \)
C. \(\overrightarrow {OM'} = - k\overrightarrow {OM} \)
D. \(\overrightarrow {OM'} = \left| k \right|\overrightarrow {OM} \)
A. \(x = \pm \dfrac{{5\pi }}{6} + k2\pi ,\,\,k \in \mathbb{Z}\)
B. \(x = \pm \dfrac{{2\pi }}{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
C. \(x = \pm \dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
D. \(x = \pm \dfrac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}\)
A. \(M'\left( { - \dfrac{1}{2};1} \right)\)
B. \(M'\left( {1; - \dfrac{1}{2}} \right)\)
C. \(M'\left( {\dfrac{1}{2}; - 1} \right)\)
D. \(M'\left( { - 1;\dfrac{1}{2}} \right)\)
A. \(D = \mathbb{R}\backslash \left\{ { \pm \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
B. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)
C. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{6} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
A. \(x = \dfrac{\pi }{6}\)
B. \(x = \dfrac{\pi }{4}\)
C. \(x = - \dfrac{\pi }{2}\)
D. \(x = \dfrac{\pi }{2}\)
A. \(x = - \dfrac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}\)
B. \(x = - \dfrac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}\)
C. \(x = - \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\)
D. \(x = \dfrac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}\)
A. \(SM\)
B. \(SA\)
C. \(MN\)
D. \(SN\)
A. \(M'\left( {2; - 5} \right)\)
B. \(M'\left( {4; - 1} \right)\)
C. \(M'\left( {2;5} \right)\)
D. \(M'\left( { - 2; - 5} \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK