Bài tập 6 trang 104 SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 6 trang 104 SGK Đại số & Giải tích 11

Cho hình vuông C1 có cạnh bằng 4. Người ta chia các cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông lại làm tiếp tục như trên để được hình vuông C2. Từ hình vuông C2 lại tiếp như trên để được hình vuông C3. Tiếp tục quá trình như trên, ta nhận được dãy các hình vuông \(C_1, C_2, ...,C_n.\) Gọi  an là độ dài cạnh của hình vuông Cn. Chứng minh dãy số (an) là một cấp số nhân. 

Hình vuông C1 có cạnh a1 = 4. Từ đó ta tính được hình vuông C2 có cạnh \(a_2=\sqrt{1^2+3^2}=\sqrt{10}\), hình vuông C3 có cạnh \(a_3=\frac{5}{2}\), hình vuông C4 có cạnh là \(a_4=\frac{5\sqrt{10}}{8}\)

Từ đó  ⇒ \((a_n)\) là cấp số nhân có a1 = 4 và công bội \(q=\frac{\sqrt{10}}{4}.\)

 

-- Mod Toán 11

Video hướng dẫn giải bài 6 SGK

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK