Bài tập 47 trang 123 SGK Toán 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 47 trang 123 SGK Toán 11 NC

Trong các dãy số dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân ? Hãy xác định công sai hoặc công bội của mỗi cấp số đó.

a. Dãy số (un) với un = 8n + 3

b. Dãy số (un) với un = n2+n+1

c.  Dãy số (un) với un = 3.8n

d. Dãy số (un) với un = (n+2).3n

a) Ta có un+1 − un = 8(n+1)+3−(8n+3) = 8, ∀n ≥ 1

Suy ra (un) là cấp số cộng với công sai d = 8.

b) Ta có un+1 − un = (n+1)2+(n+1)+1− n2−n−1 = 2(n+1) không là hằng số.

Vậy (u­n) không là cấp số cộng.

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{n^2} + 3n + 3}}{{{n^2} + n + 1}}\) không là hằng số nên (un) không là cấp số nhân.

c) Ta có \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{3.8}^{n + 1}}}}{{{{3.8}^n}}} = 8,\forall n \ge 1\). 

Do đó (un) là cấp số nhân với công bội q = 8.

d) \({u_{n + 1}} - {u_n} \)

\(\begin{array}{l}
 = \left( {n + 3} \right){.3^{n + 1}} - \left( {n + 2} \right){.3^n}\\
 = {3^n}.\left( {3n + 9 - n - 2} \right)\\
 = {3^n}.\left( {2n + 7} \right)
\end{array}\)

không là hằng số nên (un) không là cấp số cộng.

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\left( {n + 3} \right){{.3}^{n + 1}}}}{{\left( {n + 2} \right){{.3}^n}}} = \frac{{3n + 9}}{{n + 2}}\) 

không là hằng số nên (un) không là cấp số nhân.

 

-- Mod Toán 11

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK