Bài tập 5 trang 82 SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 82 SGK Đại số & Giải tích 11

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là  \(\frac{n(n-3)}{2}\)

Ta chứng minh bài toán trên bằng phương pháp quy nạp

Dễ kiểm tra được bài toán trên đúng khi n = 4. Giả sử bài toán đúng đến \(n=k\geq 4\), tức là đa giác lồi k cạnh có số đường chéo là \(\frac{k(k-3)}{2}\)

Ta phải chứng minh bài toán đúng đến n =k +1, tức là đa giác lồi k + 1 cạnh có \(\frac{(k+1)(k-2)}{2}\) đường chéo.

Thật vậy đa giác lồi k +1 cạnh có số đường chéo bẳng số đường chéo của đa giác lồi k cạnh cộng với k - 1 đường chéo.

Như vậy theo giả thiết quy nạp ta có số đường chéo của đa giác lồi k + 1 cạnh là: \(\frac{k(k-3)}{2}+k-1=\frac{k^2-k-2}{2}=\frac{(k+1)(k-2)}{2}\)

Từ đó suy ra điều phải chứng minh.

 

-- Mod Toán 11

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK