A. 26
B. 16
C. 27
D. 44
C
Tập xác định: \(D=\mathbb{R}.\)
Ta có đạo hàm của \(\left( \left| f\left( x \right) \right| \right)'=\left( \sqrt{{{f}^{2}}\left( x \right)} \right)'=\frac{2f\left( x \right).f'\left( x \right)}{2\sqrt{{{f}^{2}}\left( x \right)}}=\frac{f\left( x \right).f'\left( x \right)}{\left| f\left( x \right) \right|},\) suy ra
Đạo hàm \(y'=\frac{\left( 12{{x}^{3}}-12{{x}^{2}}-24x \right)\left( 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right)}{\left| 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right|}\), từ đây ta có
Xét phương trình
\(\left( 12{{x}^{3}}-12{{x}^{2}}-24x \right)\left( 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right)=0\)
\( \Leftrightarrow \left[ \begin{array}{l} 12{x^3} - 12{x^2} - 24x = 0\\ 3{x^4} - 4{x^3} - 12{x^2} + m = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 1\\ x = 2\\ 3{x^4} - 4{x^3} - 12{x^2} = - m\left( * \right) \end{array} \right.\)
Xét hàm số \(g\left( x \right)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}\) trên \(\mathbb{R}\) và \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 1\\ x = 2 \end{array} \right..\)
Bảng biến thiên của \(g\left( x \right)\) như sau:
Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của \(y'=0\) và số điểm tới hạn của \(y'\) là 5, do đó ta cần có các trường hợp sau
TH1: Phương trình (*) có hai nghiệm phân biệt khác -1; 0; 2 \( \Leftrightarrow \left[ \begin{array}{l} - m > 0\\ - 32 < - m < - 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m < 0\\ 5 < m < 32 \end{array} \right.,\) trường hợp này có 26 số nguyên dương.
TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm \( - 1;0;2 \Leftrightarrow \left[ \begin{array}{l} - m = 0\\ - m = - 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m = 0\\ m = 5 \end{array} \right.,\) trường hợp này có một số nguyên dương.
Vậy có tất cả là 27 số nguyên dương thỏa mãn bài toán
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK