A.\[\frac{{12}}{5}\]
B. \[\frac{5}{{12}}\]
C. \[\frac{{15}}{{16}}\]
D. \[\frac{{16}}{{15}}\]
Điều kiện :
\[x\sqrt {{x^2} + 2} + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2} - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2} + x}} + 4 > 0\]
\[ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + \frac{{4\left( {\sqrt {{x^2} + 2} + x} \right)}}{{\sqrt {{x^2} + 2} + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2} > 0\] (vì \[\sqrt {{x^2} + 2} > x;\,\forall x\])
\[ \Leftrightarrow 2\sqrt {{x^2} + 2} > - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3x < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 3x \ge 0}\\{4({x^2} + 2) > {{( - 3x)}^2}}\end{array}} \right.}\end{array}} \right.\]</>
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{5{x^2} < 8}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\)
Khi đó ta có\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\log }_2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2} + x}}} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\end{array}\]
\[\begin{array}{l} \Leftrightarrow lo{g_2}(6x + 4\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2 + x} ) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}[2(3x + 2\sqrt {{x^2} + 2} )] - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}2 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow 1 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) + 3x + 2\sqrt {{x^2} + 2} \le lo{g_2}(\sqrt {{x^2} + 2} + x) + x + \sqrt {{x^2} + 2} ( * )\end{array}\]
Xét hàm số \[f\left( t \right) = t + {\log _2}t\,\] với t>0 ta có \[f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\,\forall t > 0\] nên f(t) là hàm đồng biến trên\[\left( {0; + \infty } \right)\]Từ đó
\[\begin{array}{l}( * ) \Leftrightarrow f(3x + 2\sqrt {{x^2} + 2} ) \le f(\sqrt {{x^2} + 2} + x)\\ \Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x\\ \Leftrightarrow \sqrt {{x^2} + 2} \le - 2x\end{array}\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2x \ge 0}\\{{x^2} + 2 \le 4{x^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{3{x^2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{\left[ {\begin{array}{*{20}{c}}{x \ge \frac{{\sqrt 6 }}{3}}\\{x \le - \frac{{\sqrt 6 }}{3}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \le - \frac{{\sqrt 6 }}{3}\)
Kết hợp điều kiện \(\left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\) ta có\[ - \frac{{\sqrt {40} }}{5} < x \le - \frac{{\sqrt 6 }}{3}\] hay\[ - \sqrt {\frac{8}{5}} < x \le - \sqrt {\frac{2}{3}} \]
Tập nghiệm bất phương trình\[S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\] nên\[a = \frac{8}{5};b = \frac{2}{3} \Rightarrow a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\]
Đáp án cần chọn là: D
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK