Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh từ 20 đỉnh trên. Tính xác suất để 3

Câu hỏi :

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh từ 20 đỉnh trên. Tính xác suất để 3 đỉnh đó là 3 đỉnh của 1 tam giác không vuông cân.

A. 1057                          

B. 16                       

C. 857

D. 319

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Tính số tam giác được tạo thành.

- Tính số tam giác vuông được tạo thành thông qua số hình chữ nhật được tạo thành.

- Tính số tam giác vuông cân được tạo thành, từ đó tính số tam giác vuông không cân = Số tam giác vuông – số tam giác vuông cân.

- Tính xác suất.

Giải chi tiết:

Số tam giác được tạo thành từ 20 đỉnh là C203 tam giác.

Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đa giác. Cứ đường đường chéo tạo thành 1 hình chữ nhật, và 1 hình chữ nhật tạo thành 4 tam giác vuông => Có 4.C102=180 tam giác vuông.

Lại có: Mỗi đỉnh trong 20 đỉnh sẽ là đỉnh của 1 tam giác vuông cân, nên số tam giác vuông cân được tạo thành từ 20 đỉnh là 20.

Số tam giác không vuông cân là 180−20=160.

Vậy xác suất để chọn được 1 tam giác không vuông cân là: P=160C203=857.

Chọn C.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK