A.\[S = \left( { - \infty ; - 3} \right).\]
B. \[S = \left( { - \infty ;2} \right).\]
C. \[S = \left( { - 3;2} \right).\]
D. \[S = \left( { - 3; + \infty } \right).\]
A.\[S = \left( { - 2;\frac{4}{5}} \right).\]
B. \[S = \left( {\frac{4}{5}; + \infty } \right).\]
C. \[S = \left( { - \infty ; - 2} \right).\]
D. \[S = \left( { - 2; + \infty } \right).\]
A.\[\frac{{11}}{2}.\]
B.8
C. \[\frac{9}{2}.\]
D. \[\frac{{47}}{{10}}.\]
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
A.\[m < \frac{1}{3}.\]
B. \[0 \ne m < \frac{1}{3}.\]
C. \[m \ne 0.\]
D. m < 0.
A.m>2
B.m=2 .
C.\[m \le 2\].
D. m < 0.
A.m>3
B.\[m \ge 3\].
C.m<3.
D.\[m \le 3\].
A.\[\left( { - \frac{1}{4}; - 1} \right) \notin S\]
B.\[S = \left\{ {\left( {x;y} \right)|4x - 3y = 2} \right\}\]
C.Biểu diễn hình học của S là nửa mặt phẳng chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
D.Biểu diễn hình học của S là nửa mặt phẳng không chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
A.Trên mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của hệ bất phương trình đã cho là miền tứ giác ABCO kể cả các cạnh với \[A\left( {0;3} \right),B\left( {\frac{{25}}{8};\frac{9}{8}} \right),C\left( {2;0} \right)\] và O(0;0).
B.Đường thẳng \[\Delta :x + y = m\;\] luôn có giao điểm với miền nghiệm của hệ với mọi giá trị của m.
C.Giá trị lớn nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 174.
D.Giá trị nhỏ nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 0.
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK