Trong các dãy số sau, dãy số nào là dãy số giảm?

Câu hỏi :

Trong các dãy số sau, dãy số nào là dãy số giảm?

A. \({u_n} = \frac{{2n + 1}}{{n - 1}}\)

B. \({u_n} = {n^3} - 1\)

C. \({u_n} = {n^2}\)

D. \({u_n} = 2n\)

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Định nghĩa dãy số giảm: Dãy \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n}\left( {n \in {N^*}} \right)\).

- Có thể giải bài toán bằng cách xét các hàm số ở từng đáp án trên tập N* (Dãy số cũng là một hàm số).

- Hàm số nào nghịch biến trên N* thì dãy số đó là dãy số giảm.

Cách giải:

Đáp án A: \(u'\left( n \right) = \frac{{ - 3}}{{{{\left( {n - 1} \right)}^2}}} < 0,\forall n > 1,n \in {N^*}\) nên dãy  \(\left( {{u_n}} \right)\) là dãy số giảm.

Đáp án B: \(u'\left( n \right) = 3{n^2} > 0,\forall n \in {N^*}\) nên dãy \(\left( {{u_n}} \right)\) là dãy số tăng.

Đáp án C: \(u'\left( n \right) = 2n > 0,\forall ,n \in {N^*}\) nên dãy \(\left( {{u_n}} \right)\) là dãy số tăng.

Đáp án D: \(u'\left( n \right) = 2 > 0,\forall ,n \in {N^*}\) nên dãy \(\left( {{u_n}} \right)\) là dãy số tăng.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK