Trang chủ Đề thi & kiểm tra Khác Phương trình đường thẳng !!

Phương trình đường thẳng !!

Câu hỏi 1 :

Phương trình tham số của đường thẳng đi qua điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có VTCP \[\overrightarrow u = \left( {a;b;c} \right)\;\]là:

A.\(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)

B. \(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)

C. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)

D. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)

Câu hỏi 2 :

Đường thẳng \[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\] có một VTCP là:

A.\[\left( {a;b;c} \right)\]

B. \[\left( {a;b;c} \right)\]

C. \[\left( {{x_0};{y_0};{z_0}} \right)\]

D. \[\left( { - {x_0}; - {y_0}; - {z_0}} \right)\]

Câu hỏi 3 :

Đường thẳng đi qua điểm \[\left( { - {x_0}; - {y_0}; - {z_0}} \right)\] và có VTCP (−a;−b;−c) có phương trình:

A.\[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\]

B. \[\frac{{x - {x_0}}}{{ - a}} = \frac{{y - {y_0}}}{{ - b}} = \frac{{z - {z_0}}}{{ - c}}\]

C. \[\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}\]

D. \[\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{{ - b}} = \frac{{z + {z_0}}}{c}\]

Câu hỏi 5 :

Điểm nào sau đây nằm trên đường thẳng \[\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}\]?

A.(0;1;2)           

B.(1;0;1)

C.(2;−2;1)        

D.(3;−4;1) 

Câu hỏi 6 :

Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\] và các điểm A(1;1;−1),B(−1;−1;1),\(C\left( {2;\frac{1}{2};0} \right)\). Chọn mệnh đề đúng:

A.A và B đều thuộc d  

B.B và C đều thuộc d

C.A và C đều thuộc d

D.chỉ có A thuộc d  

Câu hỏi 7 :

Trong không gian Oxyz, cho đường thẳng (d) đi qua  \[{M_0}\left( {{x_0},{y_0},{z_0}} \right)\;\;\]và nhận \[\overrightarrow u = \left( {a,b,c} \right),\;\;{a^2} + {b^2} + {c^2} > 0\;\]làm một vecto chỉ phương. Hãy chọn khẳng định sai trong bốn khẳng định sau?

A.Phương trình chính tắc của \[(d):\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\]

B.Phương trình tham số của \(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)

C.Nếu \[k \ne 0\;\] thì \[\vec v = k.\vec u\]là một vecto chỉ phương của đường thẳng (d).

D.Phương trình chính tắc của\[(d):\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}\]

Câu hỏi 8 :

Trong không gian Oxyz, tìm phương trình tham số trục Oz?

A.\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = 0}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{z = t}\end{array}} \right.\)

Câu hỏi 9 :

Trong không gian Oxyz, điểm nào sau đây thuộc trục Oy?

A.M(0,0,3)

B.N(0,1,0)

C.P(−2,0,0)

D.Q(1,0,1)  

Câu hỏi 10 :

Trong không gian với hệ tọa độ Oxyz,  phương trình tham số của đường thẳng \[{\rm{\Delta }}:\frac{{x - 4}}{1} = \frac{{y + 3}}{2} = \frac{{z - 2}}{{ - 1}}\] là:

A.\(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 - 4t}\\{y = 2 + 3t}\\{z = - 1 - 2t}\end{array}} \right.\)

B. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = - 4 + t}\\{y = 3 + 2t}\\{z = - 2 - t}\end{array}} \right.\)

C. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 4 + t}\\{y = - 3 + 2t}\\{z = 2 - t}\end{array}} \right.\)

D. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 4t}\\{y = 2 - 3t}\\{z = - 1 + 2t}\end{array}} \right.\)

Câu hỏi 11 :

Trong không gian với hệ trục Oxyz, cho đường thẳng dd đi qua điểm M(2,0,−1) và có vecto chỉ phương \[\overrightarrow a = \left( {4, - 6,2} \right).\]Phương trình tham số của đường thẳng d là:

A. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 3t}\\{z = - 1 + t}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 2t}\\{y = - 3t}\\{z = 1 + t}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = 4 + 2t}\\{y = - 3t}\\{z = 2 + t}\end{array}} \right.\)

Câu hỏi 12 :

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?

A.\[\frac{{x + 1}}{2} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 3}}{4}\]

B. \[\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}\]

C. \[\frac{{x - 3}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\]

D. \[\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{4}\]

Câu hỏi 13 :

Trong không gian Oxyz, cho tam giác OAB với A(1;1;2),B(3;−3;0). Phương trình đường trung tuyến OI của tam giác OAB là

A.\[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\]

B. \[\frac{x}{2} = \frac{y}{1} = \frac{z}{1}\]

C. \[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{{ - 1}}\]

D. \[\frac{x}{{ - 2}} = \frac{y}{1} = \frac{z}{1}\]

Câu hỏi 14 :

Trong không gian Oxyz, cho hình bình hành ABCD với  A(0,1,1), B(−2,3,1) và C(4,−3,1). Phương trình nào không phải là phương trình tham số của đường chéo BD.

A.\(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 - t}\\{z = 1}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = - 1 + 2t}\\{z = 1}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 + t}\\{z = 1}\end{array}} \right.\)

Câu hỏi 15 :

Trong không gian với hệ tọa độ Oxyz, cho điểm A(2,1,3) và đường thẳng \(d':\frac{{x - 1}}{3} = \frac{{y - 2}}{1} = \frac{z}{1}\). Gọi d  là đường thẳng đi qua A  và song song d′. Phương trình nào sau đây không phải là phương trình đường thẳng d?

A. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 3t}\\{y = 1 + t}\\{z = 3 + t}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 3t}\\{y = t}\\{z = 2 + t}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = 5 - 3t}\\{y = 2 - t}\\{z = 4 - t}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 4 + 3t}\\{y = - 1 + t}\\{z = 2 + t}\end{array}} \right.\)

Câu hỏi 16 :

Phương trình đường thẳng d đi qua điểm A(1;2;−3) và song song với trục OzOz là:

A. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2}\\{z = - 3}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2}\\{z = 3 + t}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.\)

Câu hỏi 17 :

Phương trình đường thẳng đi qua điểm A(1,2,3) và vuông góc với 2 đường thẳng cho trước: \[{d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\;\] và \[{d_2}:\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\] là: 

A.\[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{{ - 1}}\]

B. \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{7} = \frac{{z - 3}}{1}\]

C. \[d:\frac{{x - 1}}{{ - 4}} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}\]

D. \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}\]

Câu hỏi 18 :

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,0,0),B(0,3,0),C(0,0,−4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:  

A.\(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = - 4t}\\{z = - 3t}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 2 + 4t}\\{z = - 3t}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = - 3t}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = 1 - 3t}\end{array}} \right.\)

Câu hỏi 21 :

Đường thẳng đi qua điểm x0;y0;z0 và có VTCP (−a;−b;−c) có phương trình:


A.xx0a=yy0b=zz0c



B. xx0a=yy0b=zz0c


C. x+x0a=y+y0b=z+z0c

D. x+x0a=y+y0b=z+z0c

Câu hỏi 23 :

Điểm nào sau đây nằm trên đường thẳng x+12=y22=z1?


A.(0;1;2)



B.(1;0;1)


C.(2;−2;1)

D.(3;−4;1)

Câu hỏi 25 :

Trong không gian Oxyz, tìm phương trình tham số trục Oz?


A.x=ty=tz=t



B. x=ty=0z=0


C. x=ty=tz=0

D. x=0y=0z=t

Câu hỏi 26 :

Trong không gian Oxyz, điểm nào sau đây thuộc trục Oy?


A.M(0,0,3)



B.N(0,1,0)


C.P(−2,0,0)

D.Q(1,0,1)

Câu hỏi 28 :

Trong không gian với hệ tọa độ Oxyz,  phương trình tham số của đường thẳng Δ:x41=y+32=z21. là:


A.Δ:x=14ty=2+3tz=12t



B. Δ:x=4+4ty=3+2tz=2t


C. Δ:x=4+ty=3+2tz=2t

D. Δ:x=1+4ty=23tz=1+2t

Câu hỏi 29 :

Cho đường thẳng d:x12=y11=z+12 và các điểm A1;1;1,B1;1;1,C2;12;0.a Chọn mệnh đề đúng:


A.A và B đều thuộc d



B.B và C đều thuộc d


C.A và C đều thuộc d

D.chỉ có A thuộc d

Câu hỏi 31 :

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?


A.x+12=y+23=z34



B. x13=y21=z+31


C. x31=y+12=z13

D.x12=y23=z+34

Câu hỏi 33 :

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?


A.x+12=y+23=z34




B. x13=y21=z+31


C. x31=y+12=z13

D.x12=y23=z+34

Câu hỏi 35 :

Phương trình đường thẳng d đi qua điểm A(1;2;−3) và song song với trục Oz là:


A.x=1+ty=2z=3



B. x=1y=2+tz=3


C. x=1y=2z=3+t

D. x=1+ty=2+tz=3

Câu hỏi 37 :

Phương trình đường thẳng đi qua điểm A(1,2,3) và vuông góc với 2 đường thẳng cho trước: d1:x12=y1=z+11  d2:x23=y12=z12 là:


A.d:x14=y27=z31



B. d:x14=y27=z31


C. d:x14=y27=z31

D. d:x14=y27=z31

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK