A.\[{\rm{\Omega }} = \left\{ {SS,NN,NS,SN} \right\}\]
B. \[{\rm{\Omega }} = \left\{ {SS,NN,SN} \right\}\]
C. \[{\rm{\Omega }} = \left\{ {SS,NN} \right\}\]
D. \[{\rm{\Omega }} = \left\{ {SS,SN} \right\}\]
A.\[\frac{2}{9}\]
B. \[\frac{1}{6}\]
C. \[\frac{7}{{36}}\]
D. \[\frac{5}{{36}}\]
A.\[{{\rm{\Omega }}_A} = \left\{ {\left( {1,6} \right);\left( {2,6} \right);\left( {3,6} \right);\left( {4,6} \right);\left( {5,6} \right)} \right\}\]
B.\[{{\rm{\Omega }}_A} = \{ \left( {1,6} \right);\left( {2,6} \right);\left( {3,6} \right);\left( {4,6} \right);\left( {5,6} \right);\left( {6,6} \right)\} \]
C. \[{{\rm{\Omega }}_A} = \{ (1,6);(2,6);(3,6);(4,6);(5,6);(6,1);(6,2);(6,3);(6,4);(6,5)\} \]
D. \[{{\rm{\Omega }}_A} = \{ (1,6);(2,6);(3,6);(4,6);(5,6);(6,6);(6,1);(6,2);(6,3);(6,4);(6,5)\} \]
A.9
B.18
C.36
D.39
A.2
B.1
C.3
D.4
A.\[A = \left\{ 1 \right\}\] và \[B = \left\{ {2;3;4;5;6} \right\}\]
B.\[C = \left\{ {1;2;5} \right\}\] và \[D = \left\{ {3;4;6} \right\}\]
C.\[E = \left\{ {1;4;6} \right\}\] và \[F = \left\{ {2;3} \right\}\]
D.\[G = {\rm{\Omega }}\] và \[H = \emptyset \]
A.\[\frac{1}{{15}}.\]
B. \[\frac{1}{{15}}.\]
C. \[\frac{8}{{15}}.\]
D. \[\frac{1}{5}.\]
A.\[P\left( A \right) = \frac{{n\left( {{{\rm{\Omega }}_A}} \right)}}{{n\left( {\rm{\Omega }} \right)}}\]
B. \[P\left( A \right) = \frac{{n\left( {\rm{\Omega }} \right)}}{{n\left( {{{\rm{\Omega }}_A}} \right)}}\]
C. \[P\left( A \right) = n\left( {{{\rm{\Omega }}_A}} \right)\]
D. \[P\left( A \right) = n\left( {\rm{\Omega }} \right) - n\left( {{{\rm{\Omega }}_A}} \right)\]
A.\[\frac{1}{{18}}\]
B. \[\frac{1}{6}\]
C. \[\frac{1}{8}\]
D. \[\frac{2}{{15}}\]
A.\[\frac{1}{4}\]
B. \[\frac{1}{2}\]
C. \[\frac{3}{4}\]
D. \[\frac{1}{3}\]
A.\[\frac{{31}}{{32}}\]
B. \[\frac{{21}}{{32}}\]
C. \[\frac{{15}}{{16}}\]
D. \[\frac{1}{{32}}\]
A.\[\frac{4}{{16}}\]
B. \[\frac{4}{{16}}\]
C. \[\frac{1}{{16}}\]
D. \[\frac{6}{{16}}\]
A.\(\frac{1}{2}\)
B. \[\frac{1}{8}\]
C. \[\frac{7}{8}\]
D. \[\frac{1}{4}\]
A.\[\frac{{10}}{{216}}\]
B. \[\frac{{15}}{{216}}\]
C. \[\frac{{16}}{{216}}\]
D. \[\frac{{15}}{{{6^5}}}\]
A.\[\frac{1}{8}\]
B. \[\frac{3}{8}\]
C. \[\frac{7}{8}\]
D. \[\frac{1}{4}\]
A.\[\frac{1}{{216}}\]
B. \[\frac{1}{9}\]
C. \[\frac{1}{{18}}\]
D. \[\frac{1}{{36}}\]
A.\[\frac{1}{{125}}\]
B. \[\frac{1}{{126}}\]
C. \[\frac{1}{{36}}\]
D. \[\frac{{13}}{{36}}\]
A.\[\frac{2}{5}\]
B. \[\frac{1}{{20}}\]
C. \[\frac{3}{5}\]
D. \[\frac{1}{{10}}\]
A.\[\frac{{31}}{{23328}}\]
B. \[\frac{{41}}{{23328}}\]
C. \[\frac{{51}}{{23328}}\]
D. \[\frac{{21}}{{23328}}\]
A.90.
B.1200.
C.384.
D.1025
A.\[\frac{2}{5}\]
B. \[\frac{{11}}{{12}}\]
C. \[\frac{4}{5}\]
D. \[\frac{{55}}{{432}}\]
A.0,029
B.0,019
C.0,021
D.0,017
A.\[\frac{{145}}{{729}}\]
B. \[\frac{{448}}{{729}}\]
C. \[\frac{{281}}{{729}}\]
D. \[\frac{{154}}{{729}}\]
A.\[P = \frac{{144}}{{136}}.\]
B. \[P = \frac{7}{{816}}.\]
C. \[P = \frac{{23}}{{136}}.\]
D. \[P = \frac{{21}}{{136}}.\]
A.\[\frac{9}{{35}}\]
B. \[\frac{{16}}{{35}}\]
C. \[\frac{{22}}{{35}}\]
D. \[\frac{{19}}{{35}}\]
A.\[\frac{1}{{1296}}\]
B. \[\frac{{308}}{{19683}}\]
C. \[\frac{{58}}{{19683}}\]
D. \[\frac{{53}}{{23328}}\]
A.\[P\left( A \right) = \frac{{C_{480}^2 + C_{240}^2}}{{C_{720}^2}}\]
B. \[P\left( A \right) = \frac{{C_{400}^2 + C_{320}^2}}{{C_{720}^2}}\]
C. \[P\left( A \right) = \frac{{C_{300}^2 + C_{420}^2}}{{C_{720}^2}}\]
D. \[P\left( A \right) = 1 - \frac{{C_{300}^2 + C_{420}^2}}{{C_{720}^2}}\]
A.\[\frac{1}{{120}}\]
B. \[\frac{1}{3}\]
C. \[\frac{1}{{30}}\]
D. \[\frac{1}{{15}}\]
A.\[\frac{2}{5}\]
B. \[\frac{9}{{28}}\]
C. \[\frac{1}{5}\]
D. \[\frac{3}{{28}}\]
A.\[\frac{{209}}{{590}}\]
B. \[\frac{{161}}{{590}}\]
C. \[\frac{{53}}{{590}}\]
D. \[\frac{{78}}{{295}}\]
A.\[\frac{{71}}{{105}}\]
B. \[\frac{{59}}{{190}}\]
C. \[\frac{{131}}{{190}}\]
D. \[\frac{7}{{45}}\]
A.\[P\left( A \right) = 1 + P\left( {\bar A} \right)\]
B. \[P\left( A \right) = 1 - P\left( {\bar A} \right)\]
C. \[P\left( A \right) = P\left( {\bar A} \right)\]
D. \[P\left( A \right) + P\left( {\bar A} \right) = 0\]
A.\[P = \frac{{13}}{{68}}\]
B. \[P = \frac{{55}}{{68}}\]
C. \[P = \frac{{68}}{{81}}\]
D. \[P = \frac{{13}}{{81}}\]
A.\[\frac{{28}}{{39}}.\]
B. \[\frac{{15}}{{169}}.\]
C. \[\frac{{56}}{{169}}.\]
D. \[\frac{{30}}{{169}}.\]
A.\[\frac{{7234}}{{7429}}\]
B. \[\frac{{7012}}{{7429}}\]
C. \[\frac{{7123}}{{7429}}\]
D. \[\frac{{7345}}{{7429}}\]
Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn tạo thành tam giác đều là :
A.\[P = \frac{1}{{14}}.\]
B. \[P = \frac{1}{{220}}.\]
C. \[P = \frac{1}{4}.\]
D. \[P = \frac{1}{{55}}.\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK