A.\[y' = 4{x^3} - 6x + 3\]
B. \[y' = 4{x^4} - 6x + 2\]
C. \[y' = 4{x^3} - 3x + 2\]
D. \[y' = 4{x^3} - 6x + 2\]
A.\[ - \frac{3}{{{{\left( {x + 2} \right)}^2}}}\]
B. \[\frac{3}{{x + 2}}\]
C. \[\frac{3}{{{{\left( {x + 2} \right)}^2}}}\]
D. \[\frac{2}{{{{\left( {x + 2} \right)}^2}}}\]
A.\[\frac{1}{6}\]
B. \[\frac{1}{{12}}\]
C. \[ - \frac{1}{6}\]
D. \[ - \frac{1}{{12}}\]
A.\[\{ 1\} \]
B. \[\mathbb{R} \setminus \left\{ 1 \right\}\]
C. \[\emptyset \]
D. R
A.\[y' = - \frac{3}{{{x^4}}} + \frac{1}{{{x^3}}}\]
B. \[y' = \frac{{ - 3}}{{{x^4}}} + \frac{2}{{{x^3}}}\]
C. \[y' = \frac{{ - 3}}{{{x^4}}} - \frac{2}{{{x^3}}}\]
D. \[y' = \frac{3}{{{x^4}}} - \frac{1}{{{x^3}}}\]
A.\[y = \frac{{{x^3} + 1}}{x}\]
B. \[y = \frac{{3\left( {{x^2} + x} \right)}}{{{x^3}}}\]
C. \[y = \frac{{{x^3} + 5x - 1}}{x}\]
D. \[y = \frac{{2{x^2} + x - 1}}{x}\]
A.\[\frac{a}{c}\]
B. \[\frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\]
C. \[\frac{{ad + bc}}{{{{\left( {cx + d} \right)}^2}}}\]
D. \[\frac{{ad - bc}}{{cx + d}}\]Trả lời:
A.\[y' = \left( {{x^7} + x} \right)\left( {7{x^6} + 1} \right)\]
B.\[y' = 2\left( {{x^7} + x} \right)\]
C. \[y' = 2\left( {7{x^6} + 1} \right)\]
D. \[y' = 2\left( {{x^7} + x} \right)\left( {7{x^6} + 1} \right)\]
A.\[y' = \frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\]
B.\[y' = \frac{{{x^2} + 2x}}{{{{\left( {x - 1} \right)}^2}}}\]
C. \[y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\]
D. \[y' = \frac{{ - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}}\]
A.\[y' = \frac{3}{2}\frac{1}{{{x^2}\sqrt x }}\]
B. \[y' = - \frac{1}{{{x^2}\sqrt x }}\]
C. \[y' = \frac{1}{{{x^2}\sqrt x }}\]
D. \[y' = - \frac{3}{2}\frac{1}{{{x^2}\sqrt x }}\]
A.\[y' = \frac{{ - 13{x^2} - 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
B. \[y' = \frac{{ - 13{x^2} + 5x + 11}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
C. \[y' = \frac{{ - 13{x^2} + 5x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
D. \[y' = \frac{{ - 13{x^2} + 10x + 1}}{{{{\left( {{x^2} - 5x + 2} \right)}^2}}}\]
A.\[y' = \cos 2x\]
B. \[ - \cos 2x\]
C. \[2\cos 2x\]
D. \[ - 2\cos 2x\]
A.0<x<2
B.x<1
C.x<0 hoặc x>1
D.x<0 hoặc x>2
A.\[y' = 2\frac{{\tan x}}{{{{\cos }^2}x}} + 2\frac{{\cot x}}{{{{\sin }^2}x}}\]
B. \[y' = 2\frac{{\tan x}}{{{{\cos }^2}x}} - 2\frac{{\cot x}}{{{{\sin }^2}x}}\]
C.\[y' = 2\frac{{\tan x}}{{{{\sin }^2}x}} + 2\frac{{\cot x}}{{{{\cos }^2}x}}\]
D. \[y' = 2\tan x - 2\cot x\]
A.\[\frac{3}{2}\left( {\sqrt x + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\]
B. \[x\sqrt x - 3\sqrt x + \frac{3}{{\sqrt x }} - \frac{1}{{x\sqrt x }}\]
C. \[\frac{3}{2}\left( { - \sqrt x + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} - \frac{1}{{{x^2}\sqrt x }}} \right)\]
D. \[\frac{3}{2}\left( {\sqrt x - \frac{1}{{\sqrt x }} - \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\]
A.\[ - \sqrt 3 \]
B. 4
C. -3
D. \(\sqrt 3 \)
A.\[y' = \sin x\left( { - 6{x^3} + 17{x^2} + 4x - 2} \right) + \cos x\left( {6{x^3} + 19{x^2} - 2} \right)\]
B. \[y' = \sin x\left( { - 6{x^3} + 17{x^2} + 4x - 2} \right) - \cos x\left( {6{x^3} + 19{x^2} - 2} \right)\]
C. \[y' = \sin x\left( {6{x^3} + 19{x^2} - 2} \right) + \cos x\left( { - 6{x^3} + 17{x^2} + 4x - 2} \right)\]
D. \[y' = \sin x\left( {6{x^3} + 19{x^2} - 2} \right) - \cos x\left( { - 6{x^3} + 17{x^2} + 4x - 2} \right)\]
A.\[y' = \frac{{\sin \frac{x}{2}}}{{2{{\cos }^3}\frac{x}{2}}}\]
B. \[y' = {\tan ^3}\frac{x}{2}\]
C. \[y' = \frac{{\sin \frac{x}{2}}}{{co{s^3}\frac{x}{2}}}\]
D. \[y' = \frac{{2\sin \frac{x}{2}}}{{{{\cos }^3}\frac{x}{2}}}\]
A.\(f'\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{2x - 3\,\,khi\,x > 1}\\{2\,\,khi\,x \le 1}\end{array}} \right.\)
B.\(f'\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{2x - 3\,\,khi\,x > 1}\\{2\,khi\,x < 1}\end{array}} \right.\)
C. Không tồn tại đạo hàm
D. \(f'\left( x \right) = 2x - 3\)
A.\[(uv)' = u'v + v'u\]
B. \[(u + v)' = u' + v'\]
C. \[(u - v)' = u' - v'\]
D. \[{\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v + v'u}}{{{v^2}}}\]
A.\[m \le \sqrt 2 \]
B. \[m \le 2\]
C. \[m \le 0\]
D. \(m < 0\)
A.\[1 + 2\sin x\]
B. \[1 + \sin 2x\]
C. \[1 + 2\cos x\]
D. \[2\cos x\]
A.\[ - \frac{1}{{{x^3}}}\]
B. \[ - \frac{1}{x}\]
C. \[ - \frac{2}{{{x^3}}}\]
D. \[ - \frac{1}{{{x^4}}}\]
A.\[y' = 50x - 1\]
B. \[y' = 50x - 10\]
C. \[y' = 10x - 5\]
D. \[y' = 10x - 1\]
A.\[3\sin x + 2\cos x\]
B. \[3\sin x - 2\cos x\]
C. \[ - 3\sin x - 2\cos x\]
D. \[ - 3\sin x + 2\cos x\]
A.x+2
B.2x+6
C.2x+6
D.4x+11
A.\[{\left( {\frac{1}{x}} \right)^\prime } = \frac{1}{{{x^2}}}\]
B. \[(\sqrt x )' = \frac{1}{{2\sqrt x }}\] với x>0
C.\[{\left( {{x^n}} \right)^\prime } = n{x^{n - 1}}\]. với n nguyên dương
D.\[(c)' = 0\], với c hằng số
A.\[\frac{1}{{{{\sin }^2}x \cdot {{\cos }^2}x}}\]
B. \[ - \tan x + \cot x\]
C. \[\frac{{ - 1}}{{{{\sin }^2}x \cdot {{\cos }^2}x}}\]
D. 1
A.\[y' = \frac{{3x}}{{\sqrt {{x^2} + 1} }}\]
B. \[y' = \frac{{9{x^2} - x + 3}}{{\sqrt {{x^2} + 1} }}\]
C. \[y' = \frac{{9{x^2} - 2x + 3}}{{\sqrt {{x^2} + 1} }}\]
D. \[y' = \frac{{6{x^2} - x + 3}}{{\sqrt {{x^2} + 1} }}\]
A.−2018.
B.2021.
C.2021.
D.2019
A.4
B.-2
C.3
D.2
A.33m/s
B.9m/s.
C.27m/s.
D.3m/s.
A.27
B.43
C.5
D.26
A. \[S = \left( {1;2} \right]\]
B. \[S = \left[ {1;2} \right)\]
C. \[S = \left( {1;2} \right)\]
D. \[S = \left[ {1;2} \right]\]
A.\[\frac{{3\cos 2x + 2\sin 2x + 1}}{{{{\left( {\cos 2x + 3} \right)}^2}}}\]
B. \[\frac{{2\left( {3\cos 2x + 2\sin 2x + 1} \right)}}{{{{\left( {\cos 2x + 3} \right)}^2}}}\]
C. \[\frac{{2\left( {3\cos 2x + 2\sin 2x + 1} \right)}}{{\cos 2x + 3}}\]
D. \[\frac{{3\cos 2x + 2\sin 2x + 1}}{{\cos 2x + 3}}\]
A.\[f'\left( 0 \right) = 0.\]
B. \[f'\left( 0 \right) = - 2018!.\]
C. \[f'\left( 0 \right) = 2018!.\]
D. \[f'\left( 0 \right) = 2018.\]
Cho hàm số \[y = \sqrt {10x - {x^2}} \]. Giá trị của y′(2) bằng
A.\[ - \frac{3}{4}\]
B. \[\frac{3}{2}\]
C. \[\frac{3}{4}\]
D. \[ - \frac{3}{2}\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK