Cho hình lăng trụ tam giác đều ABC.ABC có đáy ABC là tam giác vuông tại A và AB = AC = a.

Câu hỏi :

Cho hình lăng trụ tam giác đều ABC.A'B'C' có đáy ABC là tam giác vuông tại A và AB = AC = a. Biết góc giữa hai đường thẳng AC' và BA' bằng 60°. Thể tích của khối lăng trụ ABC.A'B'C' bằng

A. \(a^3\)

B. \(2a^3\)

C. \(\frac{{{a^3}}}{3}\)

D. \(\frac{{{a^3}}}{2}\)

* Đáp án

D

* Hướng dẫn giải

Gọi D là đỉnh thứ tư của hình bình hành A'B'C'D'.

Do \(\left\{ \begin{array}{l}
A'B' = A'C'\\
\angle B'A'C' = 90^\circ 
\end{array} \right. \Rightarrow A'B'DC'\) là hình vuông.

\( \Rightarrow AC'//BD \Rightarrow \angle \left( {AC';BA'} \right) = d\left( {BD;BA'} \right) = 60^\circ \) và B'D = a.

Gọi \(O = A'D \cap B'C' \Rightarrow O\) là trung điểm của A'D.

\(\Delta A'B'C'\) vuông cân tại \(A' \Rightarrow A'O = \frac{{a\sqrt 2 }}{2} \Rightarrow A'D = a\sqrt 2 \).

Đặt \(BB' = x \Rightarrow A'B = \sqrt {{x^2} + {a^2}} ;BD = \sqrt {{x^2} + {a^2}} \).

TH1: \(\angle A'BD = 60^\circ \).

Áp dụng định lí cosin trong tam giác A'BD ta có:

\(A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos 60^\circ  \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} - 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\) 

\( \Leftrightarrow 2{x^2} = {x^2} + {a^2} \Leftrightarrow {x^2} = {a^2} \Leftrightarrow x = a\) 

\( \Rightarrow {V_{ABC.A'B'C'}} = BB'.{S_{\Delta ABC}} = a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{2}\)

TH2: \(\angle A'BD = 120^\circ \).

Áp dụng định lí cosin trong tam giác A'BD ta có:

\(A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos 120^\circ  \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} + 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\) 

\( \Leftrightarrow 0 = 3{x^2} + 2{a^2} \Leftrightarrow x = a = 0\) (vo li)

Vậy \({V_{ABC.A'B'C'}} = \frac{{{a^3}}}{2}\).

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK