A. 7
B. - 2
C. 3
D. 8
A. I = 20
B. I = 10
C. I = 40
D. I = 5
A. \(I = \int_1^2 {\sqrt u du} \)
B. \(I = \frac{1}{2}\int_0^3 {\sqrt u du} \)
C. \(I = \frac{1}{2}\int_1^2 {\sqrt u du} \)
D. \(I = \int_0^3 {\sqrt u du} \)
A. 4x+2y - 12z+17 = 0
B. 4x+2y - 12z - 17 = 0
C. - 4x - 2y +12z - 41 = 0
D. - 4x - 2y +12z + 41 = 0
A. (P) : 2x+ y+ z - 3 = 0
B. P :10x - 5y+5z - 3 = 0
C. (P) : 2x - y + z - 7 = 0
D. (P) : 2x + y + z - 5 = 0
A. 2b + a = 0
B. b > a
C. b = a
D. b + 2a = 0
A. I = m - n
B. I = - m - n
C. I = n - m
D. I = m + n
A. a - b = 0
B. a + b = 0
C. a + 2b = 0
D. 2a - b = 0
A. \(\frac{1}{{2a}}F\left( {ax + b} \right) + C\)
B. \(aF\left( {ax + b} \right) + C\)
C. \(\frac{1}{{a}}F\left( {ax + b} \right) + C\)
D. \(F\left( {ax + b} \right) + C\)
A. - 1
B. \(\frac{1}{2}\)
C. 0
D. 1
A. 2y - 3z = 0
B. x - 3y = 0
C. 3x + y = 0
D. 2y + 3z = 0
A. \(I = \frac{{11}}{2}\)
B. \(I = \frac{{3}}{2}\)
C. \(I = \frac{{7}}{2}\)
D. \(I = \frac{{5}}{2}\)
A. \(F\left( x \right) = \ln \left| {2x + 5} \right| + 2019\)
B. \(F\left( x \right) = - \frac{1}{{{{\left( {2x + 5} \right)}^2}}} + 2019\)
C. \(F\left( x \right) = - \frac{2}{{{{\left( {2x + 5} \right)}^2}}} + 19\)
D. \(F\left( x \right) = \frac{1}{2}\ln \left| {2x + 5} \right| + 2\)
A. G(2;1;1)
B. G(6;3;3)
C. G(2;1;-1)
D. G(1;2;1)
A. 1
B. \(\frac{{\sqrt 2 }}{2}\)
C. \({\sqrt 2 }\)
D. \({\sqrt 3 }\)
A. \( - \frac{3}{2}\)
B. \( - \ln \frac{{\sqrt 2 }}{2}\)
C. \(\ln2\)
D. \( \ln \frac{{\sqrt 2 }}{2}\)
A. I = 8
B. I = - 12
C. I = - 8
D. I = 12
A. \(\frac{3}{2}\)
B. \(\frac{1}{2}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{6}\)
A. (0;0;4)
B. (0;0;3)
C. (-1;6;0)
D. (-1;-1;0)
A. \(2{x^2} - 5x + \frac{1}{x} + C\)
B. \({x^2} - 5x + \frac{1}{x} + C\)
C. \(-2{x^2} + 5x - \frac{1}{x} + C\)
D. \(2{x^2} - 5x + \ln \left| x \right| + C\)
A. \(F\left( x \right) = {e^2} + {x^2} + \frac{1}{2}\)
B. \(F\left( x \right) = {e^2} + {x^2} + \frac{5}{2}\)
C. \(F\left( x \right) = {e^2} + {x^2} + \frac{3}{2}\)
D. \(F\left( x \right) = {e^2} + {x^2} - \frac{1}{2}\)
A. \(\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\)
B. \(\int\limits_a^b {xf\left( x \right)} dx = x\int\limits_a^b {f\left( x \right)} dx\)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\)
D. \(\int\limits_a^b {kf\left( x \right)dx = k\int\limits_a^b {f\left( x \right)dx} \left( {k \in R,k \ne 0} \right)} \)
A. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 1\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4\)
C. \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\)
D. \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 2\)
A. 3284 con
B. 11459 con
C. 10000 con
D. 8959 con
A. \(\frac{x}{a} + \frac{y}{c} + \frac{z}{b} = 1\)
B. \(\frac{x}{b} + \frac{y}{c} + \frac{z}{a} = 1\)
C. \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
D. \(\frac{x}{c} + \frac{y}{b} + \frac{z}{a} = 1\)
A. S = 1
B. \(S = \frac{1}{2}\)
C. \(S = \frac{3}{8}\)
D. S = 0
A. I(-1;2;-3), R=25
B. I(-1;2;-3), R=5
C. I(1;- 2;3), R=5
D. I(1;- 2;3), R=25
A. 3
B. 1
C. 2
D. \(\frac{1}{2}\)
A. \(\frac{1}{3}{\rm{co}}{{\rm{s}}^3}x + C\)
B. \(\frac{1}{3}{\rm{si}}{{\rm{n}}^3}x + C\)
C. \(\frac{1}{4}{\rm{si}}{{\rm{n}}^4}x + C\)
D. \({\sin ^4}x + C\)
A. 8
B. 14
C. 4
D. 2
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK