Cắt hình nón bởi một mặt phẳng qua trục thu được thiết diện là một tam giác

Câu hỏi :

Cắt hình nón bởi một mặt phẳng qua trục thu được thiết diện là một tam giác vuông có diện tích bằng 8. Diện tích xung quanh của hình nón đã cho bằng:

A. \(16\sqrt 2 \pi \)

B. \(8\sqrt 2 \pi \)   

C. \(4\sqrt 2 \pi \)

D. \(2\sqrt 2 \pi \)

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Phương pháp giải:

- Giả sử thiết diện qua trục là tam giác \(SAB\), \(O\) là tâm đường tròn đáy \( \Rightarrow O\) là trung điểm của \(AB\)

- Từ diện tích tam giác \(SAB\), tính độ dài đường sinh \(l = SA\)

- Sử dụng tính chất tam giác vuông cân: \(AB = SA\sqrt 2 \), từ đó tính bán kính \(r\)

- Diện tích xung quanh của hình nón có đường sinh \(l\), bán kính đáy \(r\)\({S_{xq}} = \pi rl\)

Giải chi tiết:

Cắt hình nón bởi một mặt phẳng qua trục thu được thiết diện là một tam giác  (ảnh 1)

Giả sử thiết diện qua trục là tam giác \(SAB\), \(O\) là tâm đường tròn đáy \( \Rightarrow O\) là trung điểm của \(AB\)

Tam giác \(SAB\) vuông tại \(S\) nên \({S_{\Delta SAB}} = \frac{1}{2}SA.SB = \frac{1}{2}S{A^2} = 8 \Leftrightarrow SA = 4 = l\)

\( \Rightarrow AB = SA\sqrt 2 = 4\sqrt 2 \Rightarrow r = OA = 2\sqrt 2 \).

Vậy diện tích xung quanh hình nón là \({S_{xq}} = \pi rl = \pi .2\sqrt 2 .4 = 8\sqrt 2 \pi \)

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK