Trong mặt phẳng phức, cho số phức z có điểm biểu diễn là N. Biết

Câu hỏi :

Trong mặt phẳng phức, cho số phức \(z\) có điểm biểu diễn là \(N.\) Biết rằng số phức \(w = \frac{1}{z}\) được biểu diễn bởi một trong bốn điểm \(M,P,Q,R\) như hình vẽ bên. Hỏi điểm biểu diễn của \(w\) là điểm nào?

A. \(P\)

B. \(Q\)

C. \(R\)


D. \(M\)


* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp giải:

Tính \(\frac{1}{z}\) để tìm được tọa độ điểm biểu diễn số phức \(\frac{1}{z}\).

Đánh giá hoành độ và tung độ để xác định xem điểm cần tìm thuộc góc phần tư nào, từ đó chọn đáp án.

Giải chi tiết:

Gọi số phức \(z = a + bi{\mkern 1mu} {\mkern 1mu} \left( {a;b \in \mathbb{R}} \right)\) thì điểm \(N\left( {a;b} \right)\)

Khi đó số phức: \(\frac{1}{z} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{\left( {a + bi} \right)\left( {a - bi} \right)}} = \frac{{a - bi}}{{{a^2} + {b^2}}} = \frac{a}{{{a^2} + {b^2}}} - \frac{b}{{{a^2} + {b^2}}}.i\)

Nên điểm biểu diễn số phức \(\frac{1}{z}\) có tọa độ \(\left( {\frac{a}{{{a^2} + {b^2}}}; - \frac{b}{{{a^2} + {b^2}}}} \right)\).

Vì điểm \(N\left( {a;b} \right)\) thuộc góc phần tư thứ (IV) tức là \(a > 0;b < 0\).

Suy ra \(\frac{a}{{{a^2} + {b^2}}} > 0;{\mkern 1mu} - \frac{b}{{{a^2} + {b^2}}} > 0\) nên điểm biểu diễn số phức \(\frac{1}{z}\) thuộc góc phần tư thứ (I). Từ hình vẽ chỉ có điểm \(M\) thỏa mãn.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK