Cho hàm số y = f(x) có đạo hàm f'(x) = (x -1)^3 [x^2 + (4m - 5)x + m^2 - 7m +6]

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^3}\left[ {{x^2} + \left( {4m - 5} \right)x + {m^2} - 7m + 6} \right],{\mkern 1mu} {\mkern 1mu} \forall x \in \mathbb{R}\). Có bao nhiêu số nguyên m để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng 5 điểm cực trị?

A. 4

B. 2

C. 5

D. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp giải:

Nếu hàm số \(y = f\left( x \right)\)n điểm cực trị dương thì hàm số \(y = f\left( {\left| x \right|} \right)\)\(n + 1\) điểm cực trị.

Giải chi tiết:

Để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng 5 điểm cực trị thì hàm số \(y = f\left( x \right)\) phải có 2 điểm cực trị dương \( \Rightarrow \) Phương trình \(f'\left( x \right) = 0\) phải có 2 nghiệm bội lẻ dương phân biệt.

Xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {nghiem{\mkern 1mu} {\mkern 1mu} boi{\mkern 1mu} {\mkern 1mu} 3} \right)}\\{{x^2} + \left( {4m - 5} \right)x + {m^2} - 7m + 6 = 0{\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.\)

Do đó phương trình (*) cần phải có 1 nghiệm bội lẻ dương khác 1.

Ta có: \(\Delta = {\left( {4m - 5} \right)^2} - 4\left( {{m^2} - 7m + 6} \right)\)

\( = 16{m^2} - 40m + 25 - 4{m^2} + 28m - 24\)

\( = 12{m^2} - 12m + 1\)

Để (*) có 1 nghiệm bội lẻ dương khác 1 thì:

\(\left\{ {\begin{array}{*{20}{l}}{\Delta = 12{m^2} - 12m + 1 > 0}\\{P = {m^2} - 7m + 6 \le 0}\\{1 + 4m - 5 + {m^2} - 7m + 6 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m > \frac{{3 + \sqrt 6 }}{6}}\\{m < \frac{{3 - \sqrt 6 }}{6}}\end{array}} \right.}\\{1 \le m \le 6}\\{m \ne 1}\\{m \ne 2}\end{array}} \right.\)\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{1 < m \le 6}\\{m \ne 2}\end{array}} \right.\)

Vậy có 4 số nguyên m thỏa mãn yêu cầu bài toán.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK