Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\sqrt {\frac{{1 - x}}{{2y + 1}}} + \sqrt {\frac{{2y + 1}}{{1 - x}}} = 2\\x - y = 1\end{array} \right.\) là
D. Vô nghiệm
D
Đáp án D
Phương pháp giải: :
+) Tìm điều kiện của x và y để biểu thức trong căn có nghĩa.
+) Biểu diễn x theo y và thay vào phương trình còn lại ta được một phương trình chứa căn thức với ẩn là y. Tiếp theo, ta đặt ẩn phụ để giải, thay ngược lại để tìm được giá trị của x và y.
+) Khi tìm được nghiệm x và y ta đối chiếu với điều kiện xác định và kết luận nghiệm của hệ phương trình.
Giải chi tiết:
Đk: \(\left\{ {\begin{array}{*{20}{l}}{\frac{{1 - x}}{{2y + 1}} \ge 0}\\{\frac{{2y + 1}}{{1 - x}} \ge 0}\\{y \ne \frac{{ - 1}}{2}}\\{x \ne 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{1 - x}}{{2y + 1}} > 0}\\{\frac{{2y + 1}}{{1 - x}} > 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{1 - x > 0}\\{2y + 1 > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{1 - x < 0}\\{2y + 1 < 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{x < 1}\\{y > \frac{{ - 1}}{2}}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{x > 1}\\{y < \frac{{ - 1}}{2}}\end{array}} \right.}\end{array}} \right..\)
\(\left\{ {\begin{array}{*{20}{l}}{\sqrt {\frac{{1 - x}}{{2y + 1}}} + \sqrt {\frac{{2y + 1}}{{1 - x}}} = 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)}\\{x - y = 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)}\end{array}} \right.\)
Từ (2) suy ra: \(x = 1 + y\) thay vào (1) ta có:
PT \( \Leftrightarrow \sqrt {\frac{{1 - 1 - y}}{{2y + 1}}} + \sqrt {\frac{{2y + 1}}{{1 - 1 - y}}} = 2 \Leftrightarrow \sqrt {\frac{{ - y}}{{2y + 1}}} + \sqrt {\frac{{2y + 1}}{{ - y}}} = 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 3 \right)\)
Đặt \(\frac{{ - y}}{{2y + 1}} = t\left( {t \ge 0} \right) \Rightarrow \frac{{2y + 1}}{{ - y}} = \frac{1}{t}\) khi đó (3) có dạng:
\(\frac{{ - y}}{{2y + 1}} = 1 \Leftrightarrow 2y + 1 = - y \Leftrightarrow 3y = 1 \Leftrightarrow y = \frac{1}{3} \Rightarrow x = 1 + \frac{1}{3} = \frac{4}{3}\)
\(\sqrt t + \sqrt {\frac{1}{t}} = 2 \Leftrightarrow t + 2 + \frac{1}{t} = 4 \Leftrightarrow {t^2} - 2t + 1 = 0 \Leftrightarrow {\left( {t - 1} \right)^2} = 0 \Leftrightarrow t = 1\left( {tm} \right)\)
Suy ra: \(\frac{{ - y}}{{2y + 1}} = 1 \Leftrightarrow 2y + 1 = - y \Leftrightarrow y = \frac{1}{3}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right) \Rightarrow x = \frac{1}{3} + 1 = \frac{4}{3}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)\).
Vậy hệ phương trình vô nghiệm.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK