Có một mô hình kim tự tháp là một chóp tứ giác đều có cạnh bằng 6cm; cạnh đáy bằng 4cm được đặt trên một bàn trưng bày (đáy nằm trên mặt bàn). Một chú kiến tinh nghịch đang ở đỉnh của đáy và có ý định khám phá một vòng qua tất cả các mặt và trở về vị trí ban đầu. Tính quãng đường ngắn nhất của chú kiến (nếu kết quả lẻ thì làm tròn đến 2 chữ số thập phân).
Đáp án: 11,73 (cm)
Phương pháp giải:
Trải tất cả các mặt bên của khối chóp ra cùng một mặt phẳng.
Giải chi tiết:
Trải hình chóp S.ABCD trên cùng một mặt phẳng \(\left( {{A_1} \equiv A} \right)\).
Giả sử quãng đường của con kiến đi từ A đến \({A_1}\)là \[{\rm{AA'}}B'C'{A_1}\] , khi đó quãng đường con kiến đi ngắn nhất là độ dài đoạn \[{\rm{A}}{{\rm{A}}_1}\].
Xét tam giác SAB có: \(\cos \angle ASB = \frac{{S{A^2} + S{B^2} - A{B^2}}}{{2SA.SB}} = \frac{{{6^2} + {6^2} - {4^2}}}{{{{2.6}^2}}} = \frac{7}{9}\)
\[ \Rightarrow \angle ASB \approx 38,9^\circ \]
\[ \Rightarrow \angle AS{A_1} = 4\angle ASB \approx 155,8^\circ \]
Xét tam giác \[{\rm{AS}}{A_1}\] có: \[A{A_1}^2 = S{A^2} + SA_1^2 - 2SA.S{A_1}.\cos \angle AS{A_1} \approx 11,73{\mkern 1mu} {\mkern 1mu} \](cm).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK